Physics.Math.Code
137K subscribers
5.11K photos
1.81K videos
5.78K files
4.2K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i

№ 5535336463
Download Telegram
Media is too big
VIEW IN TELEGRAM
📈📉Опыты по физике: Плавление, кристаллизация, испарение, конденсация

Плавление и испарение — признаки изменения агрегатного состояния кристаллического вещества. Эти процессы связаны с переходом вещества из твёрдого состояния в жидкое (плавление) или из жидкого состояния в газообразное (испарение).

▪️ Плавление — переход кристаллического вещества из твёрдого состояния в жидкое. Плавление происходит при определённой температуре — температуре плавления. Каждое вещество имеет свою температуру плавления. Сопровождается поглощением энергии, так как к веществу необходимо подводить теплоту. Внутренняя энергия вещества увеличивается. Температура вещества не изменяется до тех пор, пока всё оно не расплавится.

▪️ Испарение — переход вещества из жидкого состояния в газообразное, который происходит с поверхности жидкости. Происходит при любой температуре. Скорость испарения зависит от природы жидкости, температуры, площади поверхности и наличия или отсутствия движения воздуха над поверхностью. Улетевшие молекулы уносят с собой энергию, поэтому при испарении происходит уменьшение температуры жидкости (охлаждение).

▪️ Кристаллизация — процесс образования кристаллов из газов, растворов, расплавов или стёкол. Также кристаллизацией называют образование кристаллов с данной структурой из кристаллов иной структуры (полиморфные превращения) или переход из жидкого состояния в твёрдое кристаллическое. Кристаллизация начинается при охлаждении жидкости до определённой температуры — температуры кристаллизации, которая равна температуре плавления. Во время процесса температура не меняется. Зарождение центров кристаллизации — образование кластеров с упорядоченностью, характерной для кристалла. Рост кристаллов — увеличение размера частиц за счёт присоединения атомов или молекул из жидкости. #физика #термодинамика #мкт #опыты #эксперименты #physics #видеоуроки #научные_фильмы #science

Изохорный процесс

🔥 Термостат

💧 Капля воды падающая на горячий металл 💥в Slow motion

💧 Эффект Лейденфроста

🚀 Что будет, если добавить жидкий газ в бутылку с водой

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
⚡️ Физические основы радиопередачи [1989] Киностудия Леннаучфильм

Плодотворной научной почвой для изобретения беспроволочного телеграфа А.С. Поповым были работы великих физиков с мировым именем. История радио и радиовещания. Изобретение электронных ламп и многое другое. Физические основы радиопередачи заключаются в использовании радиоволн — электромагнитных волн, которые свободно распространяются в пространстве. Информация, передаваемая по радиоканалу, кодируется в параметрах несущей волны: амплитуде, частоте или фазе.

Этапы передачи сигнала:
▪️ Формирование несущего сигнала в радиопередатчике. Это высокочастотные колебания определённой частоты.
▪️ Наложение полезного сигнала (звуков, изображений и т. д.) на несущий сигнал — модуляция.
▪️ Излучение модулированного сигнала антенной в пространство в виде радиоволн.
▪️ Приём на приёмной стороне. Радиоволны наводят модулированный сигнал в приёмной антенне, он поступает в радиоприёмник.
▪️ Выделение сигнала с нужной несущей частотой с помощью системы фильтров, затем — выделение полезного сигнала детектором.

Некоторые виды модуляции:
▪️ Амплитудная — изменение амплитуды несущего сигнала в соответствии с полезным сигналом.
▪️ Частотная — изменение частоты несущего сигнала.
▪️ Фазовая — изменение фазы несущего сигнала.

#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
💨 Пульсирующий воздушно-реактивный двигатель (ПуВРД) — вариант воздушно-реактивного двигателя. Работает в режиме пульсации: тяга развивается не непрерывно, а в виде серии импульсов, следующих друг за другом с частотой от десятков герц для крупных двигателей до 250 Гц — для малых двигателей, предназначенных для авиамоделей.

🔥💨 Парореактивная pop-pop лодочка

Устройство ПуВРД: цилиндрическая камера сгорания с длинным цилиндрическим соплом меньшего диаметра. Передняя часть камеры соединена со входным диффузором, через который воздух поступает в камеру. Между диффузором и камерой сгорания установлен воздушный клапан, работающий под воздействием разницы давлений в камере и на выходе диффузора.

Первые патенты на ПуВРД были получены независимо друг от друга в 1860-х годах Шарлем де Луврье (Франция) и Николаем Афанасьевичем Телешовым (Россия). Известным летательным аппаратом с ПуВРД (Argus As-014) является немецкий самолёт-снаряд «Фау-1», состоявший на вооружении армии Германии во время Второй мировой войны. #физика #термодинамика #мкт #механика #теплота #опыты #эксперименты #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
💥 Лазерная резка — технология резки и раскроя материалов, использующая лазер высокой мощности и обычно применяемая на промышленных производственных линиях. Сфокусированный лазерный луч, обычно управляемый компьютером, обеспечивает высокую концентрацию энергии и позволяет разрезать практически любые материалы независимо от их теплофизических свойств. В процессе резки, под воздействием лазерного луча материал разрезаемого участка плавится, возгорается, испаряется или выдувается струей газа. При этом можно получить узкие резы с минимальной зоной термического влияния. Лазерная резка отличается отсутствием механического воздействия на обрабатываемый материал, возникают минимальные деформации, как временные в процессе резки, так и остаточные после полного остывания. Вследствие этого лазерную резку, даже легкодеформируемых и нежестких заготовок и деталей, можно осуществлять с высокой степенью точности. Благодаря большой мощности лазерного излучения обеспечивается высокая производительность процесса в сочетании с высоким качеством поверхностей реза. Легкое и сравнительно простое управление лазерным излучением позволяет осуществлять лазерную резку по сложному контуру плоских и объемных деталей и заготовок с высокой степенью автоматизации процесса.

Для лазерной резки металлов применяют технологические установки на основе твердотельных, волоконных лазеров и газовых CO2-лазеров, работающих как в непрерывном, так и в импульсно-периодическом режимах излучения. Промышленное применение газо-лазерной резки с каждым годом увеличивается, но этот процесс не может полностью заменить традиционные способы разделения металлов. В сопоставлении со многими из применяемых на производстве установок стоимость лазерного оборудования для резки ещё достаточно высока, хотя в последнее время наметилась тенденция к её снижению. В связи с этим процесс лазерной резки становится эффективным только при условии обоснованного и разумного выбора области применения, когда использование традиционных способов трудоемко или вообще невозможно.

Лучше всего обрабатываются металлы с низкой теплопроводностью, так как в них энергия лазера концентрируется в меньшем объеме металла, и наоборот, при лазерной резке металлов с высокой теплопроводностью может образоваться грат. #лазер #техника #science #физика #physics #производство

💡
Physics.Math.Code
// @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Курс_физики_для_довузовской_подготовки_2008_Горбунов.pdf
40.6 MB
📕 Курс физики для довузовской подготовки [2008] Горбунов

В пособии изложены все разделы курса элементарной физики, которые тесно связаны с основными понятиями, используемыми при решении задач. Пособие полезно для подготовки к ЕГЭ, выпускным и вступительным экзаменам. Оно поможет старшеклассникам прочно усвоить все основные понятия физики и успешно сдать экзамены.

Цель издания: помочь старшеклассникам прочно усвоить все основные понятия физики и успешно сдать ЕГЭ, выпускные и вступительные экзамены.

#физика #подборка_книг #задачи #наука #science #physics

💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🧪 Опыты с лазером и жидкостями различной плотности могут демонстрировать преломление света на границе сред с разной оптической плотностью. Это явление, при котором луч света меняет направление при переходе из одной среды в другую, зависит от разницы показателей преломления.

Примеры опытов:

▪️Опыт с аквариумом и сахаром. Дно аквариума покрывают слоем кубиков рафинада, затем осторожно вливают воду, чтобы жидкость почти не перемешивалась. Аквариум оставляют в тихом месте на сутки: за это время сахар полностью расходится, причём концентрация молекул у дна оказывается выше, чем ближе к поверхности.
▪️Опыт с раствором поваренной соли и водой. В кювету, на дне которой лежит зеркало, сначала заливают раствор поваренной соли, затем медленно и осторожно, по лезвию ножа, наливают поверх солевого раствора воду. Если сделать это осторожно, то граница раздела будет чёткой, а смешивание жидкостей минимальным.
▪️Опыт с неравномерно нагретой водой. Раствор воды снизу охлаждают кубиками льда, а вверху прогревают лампой накаливания. Лазерный луч отклоняется в сторону менее нагретой жидкости.
▪️Опыт с неравномерно нагретой водой при наличии поверхностного нефтяного слоя. В том же растворе воды, который снизу охлаждают, сверху прогревают лампой, есть слой сырой нефти с показателем преломления 1,49. Лазерный луч не отклоняется в сторону менее нагретой жидкости из-за большой оптической плотности и коэффициента светопоглощения нефти.

#физика #оптика #опыты #physics #эксперименты #наука #science #видеоуроки

💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Насос без подвижных частей может перекачивать жидкость, но как? ⚡️

Электромагнитный насос [ магнитогидродинамический насос] — насос, предназначенный для перекачки расплавленных металлов, растворов солей и других электропроводящих жидкостей. Принцип действия электромагнитного насоса следующий. Внешнее магнитное поле устанавливается под прямым углом к нужному направлению движения жидкого вещества, через вещество пропускается ток. Вызванная таким образом сила Ампера перемещает жидкость.

Электромагнитные насосы используются для перемещения расплавленного припоя во многих машинах для пайки волной, для перекачки жидкометаллического теплоносителя в ядерных реакторах (например в реакторе БН-800, а также на ЯЭУ "Бук" и "Топаз") и в магнитогидродинамическом приводе.

Эйнштейном и Силардом была разработана модель холодильника, в котором электромагнитный насос приводил в движение расплавленный металл, который сжимал рабочий газ, пентан. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки

💡 Physics.Math.Code // @physics_lib
🧲 Магнит и медь. Закон Фарадея. Магнитное демпфирование

Многие видели опыт с постоянным магнитом, который как бы застревает внутри толстостенной медной трубки. Экспериментатор помещает постоянный магнит в виде небольшого шарика в медную трубу, которую он держит вертикально. Вопреки ожиданиям, шарик не падает сквозь трубу с ускорением свободного падения, а движется внутри трубы гораздо медленнее. Итак, в опыте мы наблюдаем, как постоянный магнит движется внутри полой медной трубы с постоянной скоростью. Зафиксируем произвольную точку в теле медной трубки и мысленно проведем поперечное сечение. Через данное сечение медной трубы проходит магнитный поток, создаваемый постоянным магнитом. Из-за того, что магнит движется вдоль трубы, в сечении проводника возникает переменный магнитный поток, то ли нарастающий, то ли убывающий в зависимости от того, приближается или отдаляется магнит от точки, где мы мысленно провели сечение. Переменный магнитный поток, согласно уравнениям Максвелла, порождает вихревое электрическое поле, вообще говоря, во всём пространстве. Однако, только там, где есть проводник, это электрическое поле приводит в движение свободные заряды, находящиеся в проводнике — возникает круговой электрический ток, который создает уже своё собственное магнитное поле и взаимодействует с магнитным полем движущегося постоянного магнита. Проще говоря, круговой электрический ток создает магнитное поле того же знака, что и постоянный магнит, и на магнит действует некая диссипативная сила, а если конкретно — сила трения. Читатель может справедливо задать вопрос: «Трение чего обо что?» Трение возникает между магнитным полем диполя и проводником. Да, это трение не механическое. Вернее сказать, тела не соприкасаются. [Подробные расчеты]

Быстрое изменение магнитного потока в катушках индуктивности или массивных деталях магнитопровода способствуют возникновению существенных по величине вихревых токов. Эти вихревые токи создают индуцированное магнитное поле, направленное так, чтобы поддержать прежнее состояние системы, то есть подавить внешнее воздействие, то есть уменьшить возрастающий поток.

В итоге в медном цилиндре создаются такие токи, которые порождают поле направленное против поля быстро приближающегося магнита. Это приводит к демпфированию магнита и выделению тепла внутри проводника (массивного куска меди). Количество энергии, переданной проводнику в виде тепла, равно изменению кинетической энергии, теряемой магнитом — чем больше потеря кинетической энергии магнита (произведение его массы и скорости), тем больше тепла накопление в проводнике и тем сильнее демпфирующий эффект. Вихревые токи, индуцированные в проводниках, намного сильнее, когда температура приближается к криогенным уровням. #gif #физика #physics #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
⚡️ Фигуры Лихтенберга — картины распределения искровых каналов, которые образуются на поверхности твёрдого диэлектрика при скользящем искровом разряде. Простым языком, это линии, похожие на молнии или ветви деревьев. Они появляются на многих естественных поверхностях, не пропускающих электричество — от древесины до кожи человека.

Фигуры Лихтенберга возникают на/в твёрдых телах, жидкостях и газах или внутри них во время электрического пробоя. Это природные явления, обладающие фрактальными свойствами. Фигуры Лихтенберга названы в честь немецкого физика Георга Кристофа Лихтенберга, который первым их открыл и изучил. Когда их впервые обнаружили, считалось, что их характерные формы могут помочь раскрыть природу положительных и отрицательных электрических «жидкостей».

В 1777 году Лихтенберг сконструировал большой электрофор для получения высокого напряжения статического электричества с помощью индукции. После разряда высоковольтной точки на поверхность изолятора он записал полученные радиальные узоры, посыпав поверхность различными порошкообразными материалами. Затем, прижав к этим узорам чистые листы бумаги, Лихтенберг смог перенести и записать эти изображения, тем самым открыв основной принцип современной ксерографии. Это открытие также стало предвестником современной науки физики плазмы. Хотя Лихтенберг изучал только двумерные (2D) фигуры, современные исследователи в области высоких напряжений изучают 2D и 3D фигуры (электрические деревья) на изолирующих материалах и внутри них.
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 С увеличением частоты вращения диска с магнитами наблюдается интересный эффект: ферромагнитная жидкость начинает вращаться в противоположную сторону. Связано это с тем, что достигается необходимое смещение фазы, когда предыдущая «пучность» жидкости (сгусток ферро-частиц) оказывается ближе к магниту, приближающемуся сзади, чем к магниту, который ушел вперед. Происходит смещение фаз, жидкость начинает вращаться в противоположную сторону. Иногда такой же эффект наблюдается оптике (Смотри Муаровые узоры).

#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика

💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
⚡️ Обучающий фильм Электрический ток [СССР]

Фильм поделён на три части:
1. Условия возникновения электрического тока (начинается с 00:21).
2. Источники электрического тока (03:22).
3. Электрический ток в металлах и электролитах (08:53).

Электрический ток — упорядоченное некомпенсированное движение свободных электрически заряженных частиц под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).

При изучении электрического тока, было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны.

Некоторые этапы открытия электрического тока:
▪️ 1600 год — итальянский учёный Гальвани обнаружил, что две металлические пластины, помещённые в раствор соли, начинают двигаться друг к другу. Это явление было названо «гальваническим эффектом».
▪️ 1775 год — Алессандро Вольта создал первый электрический элемент («вольтов столб»), который состоял из двух металлических пластин, разделённых изолятором. При соединении пластин с помощью ключа учёный обнаружил, что между ними возникает электрический ток.
▪️ 1820 год — Майкл Фарадей открыл, что при пропускании электрического тока через проводник вокруг него образуется магнитное поле. Это открытие позволило разработать новые способы передачи энергии на большие расстояния, такие как телеграф и телефон.

Некоторые свойства электрического тока:
▪️ Тепловое действие — ток нагревает проводники. Это используется в электрических обогревателях и утюгах.
▪️ Магнитное действие — ток образует магнитное поле вокруг проводника, по которому течёт. Это свойство применяется в электродвигателях и генераторах.
▪️ Химическое действие — ток вызывает химические реакции, например, в процессе получения металлов из руд (электролиз).

Некоторые мифы об электрическом токе:
▪️ Чем больше напряжение, тем больше опасность — на самом деле опасна сила тока, а не напряжение.
▪️ Вода проводит электричество — чистая вода почти полностью изолятор, но грязная или набранная из колодца вода содержит множество растворённых веществ, которые проводят электричество.
▪️ Резиновые перчатки и обувь не проводят электричество — только профессиональные диэлектрические боты и перчатки, испытанные на заводе высоким напряжением, могут служить защитой от электрического тока.
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM