Physics.Math.Code
137K subscribers
5.11K photos
1.81K videos
5.78K files
4.2K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i

№ 5535336463
Download Telegram
〰️ Акустическая левитация — это метод взвешивания вещества в воздухе против силы тяжести с использованием давления акустического излучения от звуковых волн высокой интенсивности. Метод работает по тем же принципам, что и акустический пинцет, используя силы акустического излучения. Однако акустические пинцеты, как правило, представляют собой устройства небольшого размера, которые работают в текучей среде и в меньшей степени подвержены влиянию силы тяжести, тогда как акустическая левитация в первую очередь связана с преодолением силы тяжести.

Обычно используются звуковые волны на ультразвуковых частотах, таким образом, не создавая звука, слышимого людям. В первую очередь это связано с высокой интенсивностью звука, необходимой для противодействия силе тяжести. Однако были случаи использования слышимых частот.

Существуют различные методы генерации звука, но наиболее распространенным является использование пьезоэлектрических преобразователей, которые могут эффективно генерировать сигналы высокой амплитуды на желаемых частотах. Этим методом сложнее управлять, чем другими, такими как электромагнитная левитация, но его преимущество заключается в возможности левитации непроводящих материалов.

Хотя изначально акустическая левитация была статичной, она прошла путь от неподвижной левитации до динамического управления парящими объектами - способности, полезной в фармацевтической и электронной промышленности. Это динамическое управление было впервые реализовано с помощью прототипа с массивом квадратных акустических излучателей, похожих на шахматную доску, которые перемещают объект с одного квадрата на другой, медленно снижая интенсивность звука, излучаемого одним квадратом, при одновременном увеличении интенсивности звука из другого, позволяя объекту перемещаться практически вертикально вверх. Совсем недавно разработка плат преобразователей с фазированной антенной решеткой позволила более произвольно управлять несколькими частицами и каплями одновременно. Недавние достижения также привели к значительному снижению цены на эту технологию. «TinyLev» — это акустический левитатор, который может быть сконструирован из широко доступных недорогих готовых компонентов и одной рамки, напечатанной на 3D-принтере.

Первая демонстрация возможности акустической левитации была сделана в экспериментах с трубкой Кундта в 1866 году. Эксперимент в резонансной камере продемонстрировал, что частицы могут собираться в узлах стоячей волны силами акустического излучения. Однако первоначальный эксперимент проводился с целью расчета длин волн и, следовательно, скорости звука внутри газа.

Первая левитация была продемонстрирована Бюксом и Мюллером в 1933 году, которые левитировали капли спирта между кристаллом кварца и отражателем. Следующий шаг вперед был сделан Хилари Сент-Клер, которая интересовалась силами акустического излучения в первую очередь для их применения при агломерации частиц пыли для использования в горнодобывающей промышленности. Он создал первое электромагнитное устройство для создания амплитуд возбуждения, необходимых для левитации, затем перешел к левитации более крупных и тяжелых предметов, включая монету.

#физика #наука #science #physics #акустика #волны #опыты #эксперименты #видеоуроки

💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Магнитная левитация — технология, метод подъёма объекта с помощью одного только магнитного поля. Магнитное давление используется для компенсации ускорения свободного падения или любых других ускорений.

Теорема Ирншоу утверждает, что, используя только ферромагнетики, невозможно устойчиво удерживать объект в гравитационном поле. Несмотря на это, с помощью сервомеханизмов, диамагнетиков, сверхпроводников и систем с вихревыми токами левитация возможна.

В некоторых случаях подъёмная сила обеспечивается магнитной левитацией, но при этом есть механическая поддержка, дающая устойчивость. В этих случаях явление называется псевдолевитация. Магнитная левитация используется в поездах на магнитной подушке, магнитных подшипниках и показе продукции.

Магнитные материалы и системы способны притягивать или отталкивать друг друга с силой, зависящей от магнитного поля и поверхности магнита. Из этого следует, что может быть определено магнитное давление.

Статическая устойчивость значит, что любое смещение из состояния равновесия заставляет равнодействующую силу выталкивать объект обратно в состояние равновесия. Теорема Ирншоу окончательно доказала, что невозможно левитировать объект, используя только статичные макроскопические магнитные поля. Силы, действующие на любой парамагнетик в любой комбинации с гравитационными, электростатическими, и магнитостатическими сделают положение объекта в лучшем случае неустойчивым относительно одной оси и это может дать неустойчивое равновесие относительно всех осей. Тем не менее, существует несколько возможностей сделать левитацию реальной, на примере использования электронной стабилизации или диамагнетиков (так как Магнитная проницаемость меньше) может быть показано, что диамагнитные материалы устойчивы относительно как минимум одной оси и могут быть устойчивы относительно всех осей. Проводники имеют относительную проницаемость к переменным магнитным полям последнего, так что некоторые конфигурации, использующие магниты, работающие на переменном токе, устойчивы сами по себе.

〰️ Акустическая левитация

#физика #наука #science #physics #акустика #волны #опыты #эксперименты #видеоуроки

💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
🧲 Магнитный двигатель — это тип вечного двигателя, который предназначен для создания вращения с помощью постоянных магнитов в статоре и роторе без внешнего источника энергии. Такой двигатель теоретически и практически нереализуем. Магнитные двигатели не следует путать с обычно используемыми двигателями с постоянными магнитами , которые питаются от внешнего источника электроэнергии.

Гипотетический магнитный двигатель работает с постоянными магнитами в статоре и роторе. Благодаря особому расположению притягивающих и отталкивающих полюсов вращательное движение ротора предположительно поддерживается постоянно. Практические реализации терпят неудачу, поскольку в магнитах нет существенной энергии, которую можно было бы использовать для движения или компенсации потерь энергии. Сила между постоянными магнитами консервативна , поскольку магнитное поле следует за потенциалом , так что работа не выполняется в течение замкнутого цикла. Через короткий промежуток времени такой двигатель прекратит движение и примет положение равновесия.

Рационализации сторонников относительно природы источника энергии различаются. Некоторые спорят только с магнитной силой, оставляя вопросы сохранения энергии в стороне. Некоторые утверждают, что постоянные магниты содержат запасенную магнитную энергию , которая будет потребляться двигателем. Такая существующая энергия ограничена энергией, затраченной при производстве магнита, которая довольно мала. Кроме того, это привело бы к быстрому уменьшению намагниченности с течением времени, чего не наблюдается. Другие рационализации включают ссылки на так называемую свободную энергию и энергию нулевой точки , не объясняя, как эти энергии высвобождаются. Другие утверждают, что их двигатели могли бы, возможно, преобразовывать тепловую энергию из окружающей среды в механическое движение ( вечный двигатель второго рода ).
#физика #наука #science #physics #магниты #резонанс #опыты #эксперименты #видеоуроки #магнетизм

💡 Physics.Math.Code // @physics_lib
💫 В космосе жарко или холодно? 🚀

В космосе человечество сталкивается с экстремальными температурами — ледяным холодом и огненной жарой. Благодаря инновационным методам защиты и технологическому прогрессу, астронавты и космические аппараты смогли справиться с суровыми условиями. Разбираемся, какая температура в космосе и от чего она зависит.

Температура — это измерение скорости, с которой движутся частицы, а тепло — количество энергии, которой обладают частицы объекта. В космосе нет четкой температуры, так как нет воздуха, который мог бы передавать тепло.

Но космос не является полностью вакуумным. Хотя космическое пространство очень разреженное, там все равно присутствуют различные частицы и газы, которые влияют на окружающие объекты и процессы.

После Большого Взрыва около 13,8 млрд лет назад Вселенная была горячей и плотной, заполненной высокотемпературным газом и энергичными фотонами. С расширением Вселенной газ и фотоны также расширялись и охлаждались. Приблизительно через 380 000 лет произошла рекомбинация, когда электроны и протоны объединились, образуя стабильные атомы, что привело к освобождению пространства и прозрачности Вселенной для света.

Свободные фотоны, которые возникли в результате рекомбинации, постепенно остывали из-за расширения Вселенной. Результатом этого охлаждения стало реликтовое излучение, заполняющее весь космос в диапазоне микроволновых волн. Его температура составляет около −270,45°C.

В вакууме, где отсутствует воздух или другие частицы для передачи тепла путем проводимости и конвекции, тепло может передаваться только через излучение. Тепловое излучение — это электромагнитные волны, которые возникают в результате объединения элементарных частиц, таких как фотоны, электроны и протоны. Фотоны и другие элементарные частицы могут излучаться Солнцем и другими объектами космоса. Солнечные лучи содержат электромагнитные волны, включая инфракрасное, видимое и ультрафиолетовое излучение. Когда эти лучи попадают на поверхность объекта, они поглощаются, что приводит к нагреванию. Интенсивность нагрева зависит от свойств поверхности объекта и его положения относительно Солнца. Если всю энергию, что доходит от Солнца до Земли принять за 100%, то поверхностью поглощается 48%.

Международная космическая станция постоянно находится под воздействием солнечного света. Сторона, которая обращена к Солнцу, нагревается до 121 . Теневая сторона охлаждена до −157°C. Внутри МКС поддерживается комфортный температурный режим для астронавтов, примерно в диапазоне 20−25°C, благодаря системам отопления и охлаждения, которые регулируют условия внутри станции. Температура в открытом космосе может быть суровой для человека, несмотря на то, что вакуум космоса не способен отнимать тепло напрямую из-за отсутствия воздуха или других частиц для проводимости или конвекции, а тепловая потеря через контакт с окружающей средой минимальна. Космические скафандры и аппараты обладают теплоизоляцией, чтобы минимизировать потерю тепла. Они также имеют системы регулирования температуры, включающие обогрев и охлаждение. Чтобы справиться с экстремальной жарой или холодом, большинство космических скафандров изолированы слоями ткани (неопреном, гор-тексом, дакроном) и покрыты отражающими внешними слоями (майларом или белой тканью). #физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science

Фильмы про космос:

🚀 Космонавтика и астрономия

☄️ Зачем нам Луна?

💥 Астрономия. Луна 1989 Центральное телевидение

🔵 Географическая оболочка [1976]

🌖 Луна — что это? [1973] Центральное телевидение

🌔 Лунная трасса (Луна-20) [1972] ЦентрНаучФильм

🌚 Жили-были первооткрыватели - 25 серия. Армстронг, Луна и космос

🌘Ученые против мифов. Владимир Сурдин — Американцы были на Луне

🫧 Фазы Луны

⚫️ Бессердечная гравитация [ Алексей Семихатов ]

🌘 Базз Олдрин во время полёта "Аполлона-11" видел нечто

🖥 Против теории относительности и Эйнштейна // Алексей Семихатов, Владимир Сурдин / Вселенная Плюс

🪐 Вся правда об изучении Венеры зондами из СССР

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🦾 Шарнирный механизм нового поколения не имеет аналогов ⚙️

Сотрудники Университета Ямагата, Япония, представили шаровой шарнирный механизм нового поколения. Его принцип работы схож с вращательной манжетой плеча человека. Такая система способна обеспечить полный диапазон движений по всем осям. ABENICS представляет собой шаровой шарнирный механизм с тремя степенями свободы. Система использует сферические зубчатые элементы, напоминающие по своей форме суставы. Если присоединить к такой конструкции новое звено, например, руку или ногу, можно добиться плавного движения конечности.

Технология может найти применение в создании роботов нового поколения, поскольку в современных гуманоидных роботах используются два или более моторизованных сочленения: одно для движения вверх и вниз, другое — для движения вперёд и назад, третье — для управления вращением. Потенциал использования ABENICS довольно широкий. С помощью разработки хирурги могут выполнять лапароскопические операции с более высокой точностью. Также системы могут использоваться в стоматологии. Вдобавок технология может найти применение в аэрокосмической отрасли для создания конечностей роверов и роботов. #робототехника #техника #наука #механика #биомеханика #физика #physics

Первые промышленные роботы в СССР

✂️ Роботизированная хирургическая система Да Винчи

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ Катушка Тесла как музыкальный инструмент⚡️

Человеческое ухо воспринимает звуковые волны где-то от 20 герц до 20 килогерц, в то время, как устройство резонирует с частотой 230 кГц, что значительно превышает максимальную частоту звука, слышимую человеком. Но можно включать и выключать разряды именно с той частотой, с которой слышен нужный нам звук. [Схема]

Поющая катушка Теслы, которую иногда называют зеусафоном, торамином или музыкальной молнией, представляет собой разновидность плазменного динамика. Это разновидность твердотельной катушки Теслы, которая была модифицирована для воспроизведения музыкальных тонов путём модуляции мощности искры. В результате получается низкочастотный звук, напоминающий аналоговый синтезатор. Высокочастотный сигнал действует по сути как несущая волна; его частота значительно выше слышимых человеком звуковых частот, поэтому цифровая модуляция может воспроизводить узнаваемый тембр. Музыкальный тон возникает непосредственно при прохождении искры через воздух. Поскольку полупроводниковые катушки ограничиваются модуляцией «вкл-выкл», воспроизводимый звук состоит из прямоугольных, а не синусоидальных волн (хотя возможны простые аккорды). #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🔩 Анодирование титановых деталей позволяет изменить их цвет. Эта обработка навсегда окрашивает металл без необходимости наносить краску или гальваническое покрытие.

Существует два метода анодирования:

▪️ Электрическое анодирование. Для получения единого, равномерно тонированного цвета используется постоянный ток не менее 80 вольт и от 1 до 3 ампер. Титановый кусок помещают в ванну с проводящей жидкостью, соединённой с источником питания полосой проводящего металла. Ток применяют к металлу до получения желаемого цвета. Цвет меняется в зависимости от силы тока и используемого напряжения.

▪️ Тепловое анодирование. Технология идентична электрическому анодированию, но реакция запускается не электрическим током, а теплом. Тепловое анодирование менее точно, чем электрический метод, но оно даёт более сложные результаты, например, градиенты или разноцветные эффекты. Первый шаг — полностью очистить и высушить изделие, затем происходит непосредственное обжигание металла, пока он не изменит цвет. С помощью приближения или удаления пламени можно менять цвета и создавать узоры.

Титан – современный легкий, прочный и коррозионно-стойкий конструкционный материал. Относится к переходным металлам. Он устойчив во многих средах, при комнатной температуре, на воздухе - до 550 °C. Стойкость титана обусловлена присутствием на поверхности тонкой, но плотной оксидной пленки. Толщина ее достигает 5-20 нм, что чуть больше, чем на алюминии, но на титане она гораздо прочнее. Естественная пленка на титане преимущественно состоит из рутила и анатаза. Повысить толщину и плотность естественной оксидной пленки на титане можно путем анодирования (анодного оксидирования). После анодирования можно также добиться повышения микротвердости поверхности титана, износостойкости, жаростойкости, жаропрочности, усталостной прочности и стойкости к схватыванию. После анодирования повышаются антифрикционные свойства поверхности деталей, предотвращается контактная коррозия при соприкосновении титана с алюминием, магнием, кадмиевыми и цинковыми покрытиями. Также анодная плёнка, благодаря пористой структуре, хорошо зарекомендовала себя как подслой для нанесения лакокрасочных материалов, клеев, герметиков, смазок. Высокая коррозионная стойкость в физиологической среде анодированного титана позволяет использовать данный материал для производства имплантов и протезов.
#видеоуроки #physics #физика #опыты #электродинамика #анодирование #химия #эксперименты #научные_фильмы #электролиз

💡 Physics.Math.Code // @physics_lib
📝imit неизвестен: Олимпиадная задачка на нахождение предела 💬

Предложена одним из наших подписчиков в нашем инженерном чате: @math_code

📝 Обсуждение здесь в комментариях

#задачи #математика #math #высшая_математика #математический_анализ #calculus

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM