​​BloombergGPT: A Large Language Model for Finance
The realm of financial technology involves a wide range of NLP applications, such as sentiment analysis, named entity recognition, and question answering. Although Large Language Models (LLMs) have demonstrated effectiveness in various tasks, no LLM specialized for the financial domain has been reported so far. This work introduces BloombergGPT, a 50-billion-parameter language model trained on an extensive range of financial data. The researchers have created a massive 363-billion-token dataset using Bloomberg's data sources, supplemented with 345 billion tokens from general-purpose datasets, potentially creating the largest domain-specific dataset to date.
BloombergGPT has been validated on standard LLM benchmarks, open financial benchmarks, and a suite of internal benchmarks that accurately reflect its intended usage. The mixed dataset training results in a model that significantly outperforms existing models on financial tasks without sacrificing performance on general LLM benchmarks. The paper also discusses modeling choices, training processes, and evaluation methodology. As a next step, the researchers plan to release training logs (Chronicles) detailing their experience in training BloombergGPT.
Paper: https://arxiv.org/abs/2303.17564
A detailed unofficial overview of the paper: https://andlukyane.com/blog/paper-review-bloomberggpt
#deeplearning #nlp #transformer #sota #languagemodel #finance
The realm of financial technology involves a wide range of NLP applications, such as sentiment analysis, named entity recognition, and question answering. Although Large Language Models (LLMs) have demonstrated effectiveness in various tasks, no LLM specialized for the financial domain has been reported so far. This work introduces BloombergGPT, a 50-billion-parameter language model trained on an extensive range of financial data. The researchers have created a massive 363-billion-token dataset using Bloomberg's data sources, supplemented with 345 billion tokens from general-purpose datasets, potentially creating the largest domain-specific dataset to date.
BloombergGPT has been validated on standard LLM benchmarks, open financial benchmarks, and a suite of internal benchmarks that accurately reflect its intended usage. The mixed dataset training results in a model that significantly outperforms existing models on financial tasks without sacrificing performance on general LLM benchmarks. The paper also discusses modeling choices, training processes, and evaluation methodology. As a next step, the researchers plan to release training logs (Chronicles) detailing their experience in training BloombergGPT.
Paper: https://arxiv.org/abs/2303.17564
A detailed unofficial overview of the paper: https://andlukyane.com/blog/paper-review-bloomberggpt
#deeplearning #nlp #transformer #sota #languagemodel #finance