Data Science by ODS.ai 🦜
51K subscribers
363 photos
34 videos
7 files
1.52K links
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @haarrp
Download Telegram
β€‹β€‹πŸ’£New open-source recommender system from Facebook.

Facebook is open-sourcing DLRM β€” a state-of-the-art deep learning recommendation model to help AI researchers and the systems and hardware community develop new, more efficient ways to work with categorical data.

Link: https://ai.facebook.com/blog/dlrm-an-advanced-open-source-deep-learning-recommendation-model/
Github: https://github.com/facebookresearch/dlrm
ArXiV: https://arxiv.org/abs/1906.03109

#Facebook #DLRM #recommender #DL #PyTorch #Caffe
​​Release of 27 pretrained models for NLP / NLU for PyTorch

Hugging Face open sources a new library that contains up to 27 pretrained models to conduct state-of-the-art NLP/NLU tasks.

Link: https://medium.com/dair-ai/pytorch-transformers-for-state-of-the-art-nlp-3348911ffa5b

#SOTA #NLP #NLU #PyTorch #opensource
Great collections of Data Science learning materials

The list includes free books and online courses on range of DS-related disciplines:

Machine learning (#ML)
Deep Learning (#DL)
Reinforcement learning (#RL)
#NLP

Tutorials on #Keras, #Tensorflow, #Torch, #PyTorch, #Theano

Notable researchers, papers and even #datasets. It is a great place to start reviewing your knowledge or learning something new.

Link: https://hackmd.io/@chanderA/aiguide

#wheretostart #entrylevel #novice #studycontent #studymaterials #books #MOOC #meta
PyTorch 1.3 released

- named tensors support
- general availability of Google Cloud TPU support
- captum - SOTA tools to understand how the importance of specific neurons and layers affect predictions made by the models
- crypten - a new research tool for secure machine learning with PyTorch
- many other improvements

Official announce: https://pytorch.org/blog/pytorch-1-dot-3-adds-mobile-privacy-quantization-and-named-tensors/
Captum website: https://www.captum.ai
CrypTen code: https://github.com/facebookresearch/CrypTen
#DL #PyTorch #TPU #GCP #Captum #CrypTen
πŸŽ“ Reinforcement Learning Course from OpenAI

Reinforcement Learning becoming significant part of the data scientist toolbox.
OpenAI created and published one of the best courses in #RL. Algorithms implementation written in #Tensorflow.
But if you are more comfortable with #PyTorch, we have found #PyTorch implementation of this algs

OpenAI Course: https://spinningup.openai.com/en/latest/
Tensorflow Code: https://github.com/openai/spinningup
PyTorch Code: https://github.com/kashif/firedup

#MOOC #edu #course #OpenAI
​​Neighbourhood Components Analysis
a PyTorch implementation of Neighbourhood Components Analysis

NCA learns a linear transformation of the dataset such that the expected leave-one-out performance of kNN in the transformed space is maximized.

The authors propose a novel method for learning a Mahalanobis distance measure to be used in the KNN classification algorithm. The algorithm directly maximizes a stochastic variant of the leave-one-out KNN score on the training set.

It can also learn low-dimensional linear embedding of labeled data that can be used for data visualization and fast classification. Unlike other methods, this classification model is non-parametric, making no assumptions about the shape of the class distributions or the boundaries between them.

The performance of the method is demonstrated on several data sets, both for metric learning and linear dimensionality reduction.

paper (only pdf): https://www.cs.toronto.edu/~hinton/absps/nca.pdf
github: https://github.com/kevinzakka/nca

#kNN #pca #nca #PyTorch