onlinebme
4.82K subscribers
1.48K photos
574 videos
345 files
700 links
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ارائه‌دهنده‌ی پکیجهای آموزشی پروژه محور:
برنامه‌نویسی متلب-پایتون
پردازش تصویر-سیگنالهای حیاتی
شناسایی الگو
یادگیری ماشین
شبکه‌های عصبی
واسط مغز-کامپیوتر

تماس👇
09360382687
@onlineBME_admin

www.onlinebme.com
Download Telegram
🔆 داده ورودی
همانطور که گفته شد شبکه عصبی پرسپترون برای کلاسبندی الگوهای خطی استفاده می شود, اگر داده #خطی نباشد این الگوریتم هیچگاه #همگرا نخواهد شد!

#خلاصه_مطالب

@IUST_Bioelecteric
با سلام
#مطالب_آموزشی_سال96
👇👇👇👇
شما همراهان عزیز جهت استفاده از مطالب آموزشی ( فایل pdf) قرار داده شده در کانال می توانید از هشتک های زیر:
#Neural_Network
#neural_network
#Multi_layer_perceptron
#MLP
#mlp
#RBF
#batch_mode
#pattern_mode
#deep_learning
#convolutional_neural_networks
#pattern_recognition
#pca
#neuroscience
#classification
#KNN
#kmeans_clusterring
#FCM
#EEG
#qeeg
#brain_mapping
#qrs
#detection
#ssvep
#outliers
#feature_selection
#neuroscience
#voice_recognition
#image_processing
#bit_level_slicing
#image_registeration
#image_fusion
#template_matching
#pet
#OpenCV
#Python
#OpenCV_in_Python
#endnote
#data_mining
#bone_age
#p300
#ERP
#پردازش_تصویر
#پردازش_تصاویرپزشکی
#پردازش_تصویر
#عکاسی
#پردازش_تصویر
#تبدیل_تصویر_خاکستری_به_باینری
#برجسته_کردن_لبه
#فیلتر_مکانی
#انطباق_تصاویر
#مورفولوژی
#ایزو
#سرعت_شاتر
#دریچه_دیافراگم
#تصویربرداری
#سن_استخوانی
#نویزسفید
#شبکه_عصبی_پرسپترون_چندلایه
#صفرتاصدRBF
#شبکه_عصبی_RBF
#قضیه_کاور
#مهندسی_عصبی ( بخش یک تا 5 )
#تحریک_الکتریکی_عملکردی
#عصب_شناسی
#خطای_شنیداری
#سیگنالهای_حیاتی
#اسپایک_سورتینگ
#نرمال_سازی
#استخراج_ویژگی
#انتتخاب_ویژگی
#رگرسیون
#کلاسبندی
#کلاسبند_حداقل_فاصله
#سفیدکردن
#تطبیق_الگو
#تجزیه_تحلیل_مولفه_های_اصلی
#باندگاما_بتا_آلفا_تتا_دلتا
#نقشه_برداری_مغزی
#واسط_مغزوکامپیوتر
#رگرسیون
#اکوی_قلب
#پردازش_صوت
#کاشت_الکترود
#روش_پارامتری
#ترجمه
#ویدیوی_آموزشی
#آموزش_کدنویسی_در_متلب
نطریه #نسبیت #انیشتین
#توفنده #استارت‌آپ
#استرس
#آدرنالین
#اپینفرین
#جراحی
#چالش_مانکن

خلاصه مطالب دوره شبکه عصبی و دوره جامع:
#رگرسیون
#کلاسبندی
#جلسه_اول
#دوره_شبکه_عصبی
#اولویت_های_ریاضیاتی
#مسیرهای_جستجو
#قوانین_نقطه_گذاری
#قوانین_اسم_گذاری
#کنترل_برنامه
#توابع_پرکاربرد
#تابع_find
#آرایه_ منظم
#مغزانسان
#مرز
#نورون
#پرسپترون
#پرسپترون_تک_لایه
داده #خطی
#همگرا
#نورون_بیولوژیکی
#نورون_مصنوعی
#یادگیری_هبین
#هبین

#دوره_جامع_مهندسی_پزشکی
#ارزیابی
#BCI
#motor_imagery
#EOG
#matlab
#neuroscience
#signal_processing
#Pattern_recognition
#kmeans
#random_subsampling
#leave_one_out
#k_fold_cross_validation
#knn
#slp
#while
#for
و یا از کلمات کلیدی زیر:
سرعت شاتر دوربین
سرعت نور
آموزش اوپن سی وی
کوانتیزه کردن تصویر
هیستوگرام
ادغام تصاویر پزشکی
فیلترهای مکانی
بینایی ماشین
پردازش تصویر
آستانه گذاری محلی
شبکه عصبی
الگوریتم LMS
کاهش نویز سیگنال ECG
ثبت خارج سلولی
رگرسیون
کلاسبندی
خوشه بندی
الگوریتم kmeans
منطق فازی
روش ارزیابی
کلاسبندهای پارامتری
کلاسبند فاصله اقلیدسی، ماهالانوبیس
فیلتر باترورث
رزولوشن فرکانسی
آرتیفکت
نویز
افزونگی
بیماری ویلسون
بیماری ALS
بیماری پارکینسون
بیماری صرع
جراحی و کنترل مثانه
نحوه تولید اعداد تصادفی در یک بازه خاص
استفاده نمایید.
همچنین جهت استفاده از ویدیوی های آموزشی #رایگان می توانید از هشتک های زیر:
#ویدیوی_آموزشی
🔸پردازش تصویر
#ناحیه_بندی_با_svm
#جلسه_اولdip
#جلسه_دومdip
#جلسه_سومdip
#جلسه_4DIP
#جلسه5
#جلسه6
#جلسه7
#histogram_stretching
#bit_level_slicing
#svm
🔸 پردازش سیگنال- پترن-BCI
#فیزیونت
#ادابوست
#تجزیه_مولفه_های_اساسی
#کاهش_ابعاد_با_pca
#کلاسبندی_با_svm
#کلاسبندی #بخش_اول #بخش_دوم #بخش_سوم
#لیبل_گذاری
#شناسایی_الگو
#رگرسیون_خطی
#رگرسیون_خطی_چندمتغیره
#دانسیته_احتمال_ماکزیمم
#کنترل_دست_مصنوعی_با_ذهن
#داده_تصوری_حرکتی
ویژگیهای #آماری
#mean #varicance #skewness #kurtosis
#BCI
#pca
#adaboost
#EEGLAB
🔹 آموزش برنامه نویسی متلب از مقدماتی تا پیشرفته:
بخش 1 تا بخش 8 (کلمات کلیدی)
#جلسه9
#جلسه10
#جلسه11
#جلسه12
#جلسه13
#جلسه14
#جلسه15
استفاده نمائید.

با ما همراه باشید😊
سایت آنلاین bme داره آماده میشه، از این بعد ویدیوهای آموزشی رایگان رو در سایت قرار داده و در کانال اطلاع رسانی خواهیم کرد😉

@onlineBME
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 2⃣جلسه دوم: پیاده‌سازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون #پرسپترون_تک_لایه ، #پرسپترون #ماکزیمم_شباهت ، #داده_خطی ، #کلاسبندی…
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
2⃣جلسه دوم: پیاده‌سازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون

در جلسه دوم ما در ابتدا شبکه‌عصبی پرسپترون تک لایه را آموزش داده و در متلب گام به گام پیاده‌سازی ‌می‌کنیم. این شبکه ساده‌ترین نوع شبکه عصبی است که برای #کلاسبندی داده‌های #خطی استفاده می‌شود. قبل از اینکه بخواهیم یک شبکه عصبی را در محیطی ‌پیاده‌سازی کنیم لازم است که در ابتدا به #سه_سوال_اساسی جواب بدیم:

1-     ساختار این شبکه چیه؟
2-     قانون یادگیری شبکه چیه؟
3-      کاربرد این شبکه کجاست؟

ما در این جلسه به این سه سوال جواب داده و سپس #تئوری_همگرایی قانون یادگیری پرسپترون را آموزش میدهیم. بعد از اینکه تئوری  شبکه عصبی پرسپترون تک لایه را یاد گرفتیم یک #الگوریتم_خلاصه_شده جهت یادگیری این شبکه می‌نویسم و طبق آن در متلب به صورت #مرحله-به-مرحله #پیاده‌سازی ‌می‌کنیم. و در نهایت چند مثال عملی انجام می‌دهیم تا مطالب را به طور عملی درک کنیم.  سپس برای درک بهتر مطالب، آموزش می‌دهیم که چطور میتوان #مرز تفکیک کننده داده‌ها را رسم کرد تا متوجه بشویم که شبکه عصبی پرسپترون تک لایه چطور یک مسئله کلاسبندی را انجام میدهد.

در نهایت #عیب الگوریتم #یادگیری_پرسپترون را با یک مثال عملی در متلب نشان میدهیم و بعد سراغ #راه_حل می‌رویم. قانون یادگیری پرسپترون با اینکه انقلابی در حوزه هوش مصنوعی به پا کرده است ولی دو تا مشکل اساسی دارد که در ویدیو توضیح می‌دهیم. به دلیل اینکه طبقه‌بند ماکزیمم شباهت(maximum likelihood ) شباهت خیلی زیادی به پرسپترون تک لایه دارد فصل چهارم کتاب Simon haykin طبقه بندML را در ادامه مطالب پرسپترون تک لایه آورده و ایده کلاسبندی این طبقه بند را توضیح داده است. ماهم برای اینکه رشته مطالب کتاب از دست نرود تئوری کلاسبند ML را توضیح داده و سپس در متلب ‌پیاده‌سازی کرده و یک مثال عملی هم با این کلاسبند انجام می‌دهیم. سپس شباهت و تفاوت این دو کلاسبند را به طور مفصل توضیح میدهیم و نشان میدهیم که شبکه عصبی اگر قانون یادگیری پرسپترون را بهبود دهد خیلی بهتر از کلاسبندهای #پارامتری مثل ML خواهد بود.  

🔺نکته: مباحث این جلسه طبق مطالب فصل 4 کتاب Simon haykin است.

🔍 کلمات کلیدی: شبکه عصبی پرسپترون تک لایه، قانون یادگیری پرسپترون، داده خطی ، ایراد قانون یادگیری پرسپترون، کلاسبند پارمتری و غیر پارامتری، کلاسبند ماکزیمم شباهت


جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/

🎁🎁 کد #تخفیف 20 درصدی:
Neuralnetworks98
مهلت اعتبار: 2 روز

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 8⃣ جلسه هشتم: پیاده‌سازی الگوریتم شبکه عصبی توابع شعاعی پایه(#RBF) #مرکز #سیگما #قضیه_کاور #kmeans #پروژه_عملی #رگرسیون #طبقه‌بندی #کلاسبندی…
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

8⃣ جلسه هشتم: پیاده‌سازی الگوریتم شبکه عصبی توابع شعاعی پایه(#RBF)

ما تا جلسه هفتم تمام تمرکزمون برروی شبکه عصبی معروف پرسپترون بود و این جلسه شبکه عصبی توابع شعاعی پایه(radial basis function) را آموزش می‌دهیم. این شبکه یک شبکه عصبی 3 لایه است که ازیک لایه پنهان تشکیل شده است. از قضیه  جالب #کاور برای حل مسائل پیچیده و غیرخطی استفاده می‌کند و کاربردهای زیادی در عمل دارد. شبکه عصبی rbf رویکرد متفاوتی نسبت به پرسپترون چندلایه دارد و با یک رویکرد بسیار ساده و جالب مسائل پیچیده را حل می‌کند. برخلاف mlp که در آن وزنهای سیناپسی تمام لایه ها باید محاسبه می‌شدند در این شبکه لایه ورودی به صورت #مستقیم و بدون اینکه #وزن_سیناپسی در بین دولایه  باشد به لایه پنهان وصل شده است. نورونهای لایه پنهان این شبکه به عنوان یک #کرنل_غیرخطی (گوسیrbf) عمل می‌کنند و وظیفه #نگاشت داده از فضای #غیرخطی به فضای #خطی را برعهده دارند. هر یک از نورنهای لایه پنهان به یک #مرکز و #سیگمای بهینه نیاز دارند تا به درستی داده را نگاشت دهند، برای محاسبه مراکز و سیگمای مراکز چندین روش مثل الگوریتم خوشه‌بند #kmeans مطرح شده که طبق کتاب این روشها را توضیح داده و در متلب #پیاده‌سازی کرده و مزایا و معایب هر روش را با مثال عملی توضیح می‌دهیم. در این جلسه به صورت مختصر مفهوم #خوشه‌بندی توضیح داده شده و سپس عملکرد الگوریتم kmeans جهت تعیین مراکز را توضیح داده‌ایم.  بعد از پیدا کردن مراکز و سیگماهای بهینه در این شبکه لازم است که وزنهای سیناپسی بین لایه پنهان و لایه خروجی نیز محاسبه شوند که برای محاسبه وزن سیناپسی بهینه سه روش #وینرهاف، #شبه_معکوس و #گرادیان_نزولی را توضیح داده و در متلب پیاده سازی کرده‌ایم. و در انتها چندین مثال و پروژه عملی از قبیل جلمه #تشخیص_سرطان_سینه (پروژه عملی طبقه‌بندی) ، #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی #رگرسیون) و #کلاسبندی داده سه کلاسه iris (#گل_زنبق) با استفاده از شبکه عصبی RBF انجام داده ایم که با کارایی این شبکه عصبی آشنا شده و بتوانید #پروژه‌های_عملی خودتان را با استفاده از این الگوریتم در متلب پیاده‌سازی کنید.

نکته: تمام مباحث ‌این جلسه طبق مطالب فصل 7 کتاب Simon haykin است.


 
💡 جهت خرید جلسه هشتم به لینک زیر مراجعه کنید👇👇👇

https://onlinebme.com/product/rbf/
💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme