onlinebme
4.82K subscribers
1.48K photos
574 videos
345 files
700 links
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ارائه‌دهنده‌ی پکیجهای آموزشی پروژه محور:
برنامه‌نویسی متلب-پایتون
پردازش تصویر-سیگنالهای حیاتی
شناسایی الگو
یادگیری ماشین
شبکه‌های عصبی
واسط مغز-کامپیوتر

تماس👇
09360382687
@onlineBME_admin

www.onlinebme.com
Download Telegram
دوره شبکه عصبی به پایان رسید و لازمه که از همینجا از همه شرکت کنندگان بخاطر شرکت در این دوره تشکر کنیم و امیدواریم که این دوره برای دوستان مفید بوده باشه😊.

🔶 لازمه که مروری داشته باشیم به مباحثی که در این دوره آموزش داده شد تا از این طریق دوستان دیگه ای که علاقه مند به یادگیری این مباحث هستند در دوره های بعد شرکت کنند.
🚩وجه #تمایز این دوره با دوره های دیگه این بود که اولا در این دوره نحوه استفاده از توابع آماده متلب آموزش داده نشد بلکه نحوه ی پیاده سازی شبکه ها بطور کامل آموزش داده شد! (چون باور داریم که یک مهندس باید خودش کد بنویسه نه اینکه از منابع آماده استفاده کنه).

استفاده از شبکه عصبی آماده برای شخصی که مهندسی نمیخونه و صرفا مصرف کننده هست مناسب هست.

🔺در این دوره نحوه #پیاده_سازی شبکه های عصبی آموزش داده شد و مطمئنا شرکت کنندگان بعد از تمرین و تکرار مطالبی که آموزش داده شد، در پیاده سازی شبکه ها، بهبود شبکه ها، شبیه سازی مقالات و استفاده از شبکه ها در پروژه های عملی دچار مشکل نخواهند شد.

🔺 در این دوره سعی بر این بوده است که تمام مباحث کتاب معروف Siomon Haykin را آموزش بدیم.

🔺کتاب معروف Siomon Haykin، کتابی استاندارد برای یادگیری شبکه های عصبی است که در بیشتر دانشگاههای داخل و خارج کشور تدریس می شود.

🔺در ابتدای هر جلسه، مباحث تئوری کتاب آموزش داده شد و سپس به طور گام به گام در متلب پیاده سازی شد.

🔺علاوه بر مباحث کتاب Siomon Haykin ، دو شبکه عصبی معروفPNNو ELM (بانظارت – که جهت کلاسبندی و پیش بینی استفاده می شوند) را طبق مقالات معتبر پیاده سازی کردیم که از این طریق شرکت کنندگان با پیاده سازی مقالات نیز آشنا شدند.

🔺تمامی شبکه ها در متلب پیاده سازی و سپس در پروژه‌های عملی استفاده شدند!

🚩وجه #تمایز دیگه ای این دوره با دوره های دیگه این بود که این دوره کاملا #پروژه_محور بود و در طول دوره پروژه های مختلفی با شبکه های عصبی انجام شد.

🔗پروژه هایی که در دوره آموزش داده شدند:
تشخیص سرطان سینه با استفاده از شبکه عصبی آدالاین
تشخیص سرطان سینه با استفاده از قانون یادگیری وینرهاف
#تشخیص سرطان سینه با استفاده از ML(ماکزیمم شباهت)
تشخیص سرطان سینه با استفاده از شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا
تشخیص سرطان سینه با استفاده از شبکه عصبی پرسپترون چندلایه با قانون یادگیری دلتا دلتا
تشخیص سرطان سینه با استفاده از شبکه عصبی پرسپترون چندلایه با قانون یادگیری دلتا بار دلتا
تشخیص سرطان سینه با استفاده از شبکه عصبی پرسپترون چندلایه با قانون یادگیری دلتا دلتا
تشخیص سرطان سینه با استفاده از شبکه عصبی توابع شعاعی پایه (RBF)
تشخیص سرطان سینه با استفاده از شبکه عصبی (ELM(Extreme learning machine
تشخیص #سرطان_سینه با استفاده از شبکه عصبی احتمالی (PNN)
◦ کلاسبندی داده های سه کلاسه iris# (داده ی معروف در سایت uci) با استفاده از شبکه هایی عصبی
Pnn-Elm-Rbf
MLP(back propagation)
MLP(delta delta) -MLP(delta bar delat)

#خوشه_بندی با استفاده از شبکه های عصبی خودسازمانده با قانون یادگیری رقابتی(som)
◦ پیاده سازی الگوریتم #PCA(تجزیه مولفه های اساسی) با استفاده از شبکه های عصبی خودسازمانده با قانون یادگیری هببین
◦ کلاسبندی داده های دوکلاسه و #چندکلاسه (توزیع نرمال)، مثال AND، OR، NOT، XOR
#تخمین کیفیت شراب با استفاده از شبکه های عصبی
#پیش_بینی نرخ ارز با استفاده از شبکه های عصبی

🌟با پیاده سازی این پروژه ها ، دوستان با مباحث مرتبط با تقسیم داده(روش معمول (70-30) و k_fold cross validation)، تست و ارزیابی شبکه، لیبل گذاری داده، تعیین مدل بهینه آشنا شدند.



💡دوره ی بعدی #مهرماه در #مشهد برگزار خواهد شد. دوستانی که قصد شرکت در دوره را دارند میتوانند برای پیش ثبت نام با شماره زیر تماس بگیرند.

0936-038-2687
@Bio_Engineerr
مدرس دوره: مهندس محمد نوری زاده چرلو


سایتمون رو هم دنبال کنید🙏🙏😊😊


http://matlabkhoone.ir/2017/09/08/%D9%BE%D8%A7%DB%8C%D8%A7%D9%86-%D8%A7%D9%88%D9%84%DB%8C%D9%86-%D8%AF%D9%88%D8%B1%D9%87-%DB%8C-%D8%B4%D8%A8%DA%A9%D9%87-%D9%87%D8%A7%DB%8C-%D8%B9%D8%B5%D8%A8%DB%8C-%D8%AF%D8%B1-%D8%AA%D9%87%D8%B1%D8%A7/

@IUST_Bioelecteric
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 2⃣جلسه دوم: پیاده‌سازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون #پرسپترون_تک_لایه ، #پرسپترون #ماکزیمم_شباهت ، #داده_خطی ، #کلاسبندی…
Media is too big
VIEW IN TELEGRAM
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

3⃣جلسه سوم: قانون یادگیری #LMS و پیاده‌سازی شبکه عصبی #آدالاین و انجام پروژه عملی تشخیص سرطان سینه

#آدالاین #پارامترهای_ارزیابی ، #پروژه_عملی، #تشخیص_سرطان_سینه

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 3⃣جلسه سوم( بخش دوم ): انجام پروژه های عملی با استفاده از شبکه های عصبی #آدالاین #پرسپترون ، #پروژه_عملی، #ناحیه‌بندی_تصویر #مدلسازی_گیتهای_منطقی…
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

3⃣جلسه سوم: قانون یادگیری LMS و پیاده‌سازی شبکه عصبی #آدالاین

این جلسه یکی از #مهمترین جلسات دوره تخصصی پیاده‌سازی شبکه‌های عصبی در متلب است. در جلسه دوم ما قانون یادگیری پرسپترون را آموزش دادیم و دو ایراد اساسی این قانون را مطرح کردیم. یکی از ایرادهای قانون پرسپترون این بود که الگوریتم زمانی که داده ما غیرخطی بود (داده‌ای که در آن نتوان با یک خط از هم جدا کرد) نمیتوانست همگرا شود و در نتیجه نمیتوانست یاد بگیرد. و ایراد دوم این الگوریتم این است که نمیتواند مرز کلاسبندی بهینه‌ای بدست آورد. ما در این جلسه الگوریتم #حداقل_مربعات_خطا
Least means square error
را معرفی می‌کنیم و ایرادات الگوریتم پرسپترون را حل می‌کنیم. الگوریتم LMS به جای اینکه دنبال خطای صفر باشد، دنبال #خطای_حداقل است. و با این روش زمانی که داده به صورت غیرخطی هم باشد همگرا می‌شود.

الگوریتم #LMS با دو روش به نام #وینرهاف و گرادیان نزولی وزنهای سیناپسی بهینه را محاسبه می‌کند. این روش بهینه‌ترین مرز ممکن را بدست می‌آورد ولی یک ایراد اساسی دارد و زمانی که تعداد ویژگی ها زیاد باشد محاسبه ماتریس autocorrelation بسیار سخت می‌شود. برای حل این مشکل الگوریتم #گردایان_نزولی مطرح می‌شود، این الگوریتم به جای اینکه در یک لحظه وزنهای سیناپسی را محاسبه کند در طول زمان در جهت شیب منفی خطا حرکت می‌کند و  وزنهای سیناپسی بهینه را محاسبه می‌کند. ما در ابتدا الگوریتم وینرهاف را توضیح میدهیم و سپس مرحله به مرحله در متلب پیاده سازی می‌کنیم و سپس الگوریتم گرادیان نزولی را توضیح داده و مرحله به مرحله در متلب پیاده سازی می‌کنیم. و در نهایت شبکه عصبی #آدلاین را معرفی می‌کنیم و با استفاده از این شبکه مسائل کلاسبندی را انجام میدهیم. شبکه عصبی تک لایه آدالاین هر دو ایراد شبکه عصبی پرسپترون تک لایه را حل می‌کند.

بعد از این ما طبق کتاب Simon haykin انواع #روشهای_توقف_آموزش شبکه عصبی را توضیح میدهم. سه روش برای توقف آموزش شبکه عصبی است که هر سه روش آموزش داده شده و در متلب پیاده سازی می‌شوند.

برای آموزش شبکه عصبی نیاز است که داده ها به شبکه اعمال شوند و شبکه در طول زمان آموزش ببیند و برای اینکار دو روش به نام #دسته‌ای (batch mode) و #موردی(pattern mode) کتاب معرفی کرده که هر دو روش توضیح داده شده و در متلب پیاده‌سازی می‌شوند و مزایا و معایب هر روش توضیح داده می‌شود و در انتهای جلسه #پارامترهای_ارزیابی
#accuracy
#sensitivity
#specificity
یک طبقه بند توضیح داده می‌شود و سپس پروژه‌های انجام شده با پارامترهای گفته شده ارزیابی می‌شود.  و همچنین الگورتیم #cross_validation  که برای انتخاب ساختار بهینه یک شبکه عصبی استفاده میشود را توضیح میدهیم.

☑️ برای اینکه با کاربردهای عملی این شبکه‌ها آشنا شوید در یک ویدیو جداگانه 3 #پروژه_عملی به نام #تشخیص_سرطان_سینه ، #ناحیه‌بندی_تصویر و #پیاده‌سازی_گیتهای_منطقی AND, OR  را با استفاده از شبکه‌های عصبی به صورت مرحله به مرحله در متلب پیاده‌سازی کرده‌ایم.

🔻نکته: تمام مباحث این جلسه طبق مطالب فصل 5 کتاب Simon haykin است.

 
جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/

جهت خرید جلسه سوم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/lms-and-adaline/

🎁🎁 کد #تخفیف 20 درصدی:
Neuralnetworks98
مهلت اعتبار: 1 روز

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 4⃣ جلسه چهارم: پیاده‌سازی شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب #پرسپترون_چندلایه ، #پس_انتشار_خطا #پروژه_عملی، #…
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
4⃣ جلسه چهارم: پیاده‌سازی شبکه عصبی #پرسپترون_چندلایه با قانون یادگیری #پس_انتشار_خطا در متلب

این جلسه مهمترین جلسه دوره تخصصی پیاده‌سازی شبکه‌های عصبی در متلب است. ما در جلسه سوم الگوریتم #LMS را مطرح کرده و در نهایت شبکه‌عصبی آدالاین را معرفی کردیم که یک شبکه عصبی بهینه برای مسائل کلاسبندی و رگرسیون است.‌این شبکه‌ ایرادات شبکه عصبی پرسپترون تک لایه را برطرف کرد ولی خودش یک #ایراد اساسی دارد. که ‌این ‌ایراد در تمام شبکه‌های عصبی تک لایه وجود دارد. ‌ایراد شبکه عصبی آدالاین و یا پرسپترون تک لایه در #ساختارشان هست و به خاطر ‌اینکه #تک_لایه هستند نمی توانند مسائل #غیرخطی مثل xor را حل کنند. برای حل‌ این مسئله شبکه عصبی پرسپترون چندلایه مطرح شده است که با اضافه کردن #چند_لایه_پنهان توانسته‌اند مسائل بسیار پیچیده را به راحتی حل کنند. در ‌این جلسه تئوری الگوریتم پس ‌انتشار خطا کامل توضیح داده می‌شود و در نهایت در متلب مرحله به مرحله پیاده‌سازی می شود.‌ این جلسه برای همه گروه دانشجویی و مهندسی بسیار مفید هست و می‌توانند بعد از مشاهده‌ ویدیو هم #پروژه‌های_تخصصی خودشان را انجام دهند و هم ‌ایده‌های خود را در الگوریتم پس انتشار خطا ارائه بکنند. برای ‌اینکه در ‌این جلسه به مشکل نخورید بهتر است با #مشتق‌گیری آشنا باشید. جلسه کاملی هست و به جرات می‌‎توان گفت که #اولین دوره‌ای هست که به صورت تخصصی چنین شبکه‌ای را به صورت گام به گام در متلب پیاده‌سازی می‌کند.

بعد از‌ اینکه شبکه عصبی در متلب پیاده ‌شد، #عملکرد_لایه‌های_مختلف شبکه با #مثال_عملی توضیح داده می‌شود تا به صورت دقیق و عملی با ساختار و عملکرد شبکه‌های عصبی چندلایه آشنا شوید و متوجه شوید که شبکه‌های عصبی چندلایه چطور یک مسئله پیچیده را با ساده‌سازی مسئله در لایه‌های مختلف حل می کنند. ‌این جلسه، جلسه مورد علاقه من هست و تمام سعیم را کردم که به #زبان_ساده و در عین حال تخصصی و #جامع شبکه عصبی پرسپترون چندلایه و قانون یادگیری پس انتشار خطا را توضیح دهم و امیدوارم برای شما مفید باشد.

در انتهای دوره چندین پروژه عملی از جمله #تشخیص_سرطان_سینه (پروژه عملی #طبقه‌بندی) و #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی #رگرسیون) با استفاده از شبکه عصبی پرسپترون چندلایه به صورت #گام_به_گام در متلب پیاده‌سازی شد تا با انجام پروژه‌های عملی هم آشنا شوید و بتوانید پروژه‌های تخصصی خودتان را با مشاهده ‌این ویدیو انجام دهید.

نکته: تمام مباحث ‌این جلسه طبق مطالب فصل 6 کتاب Simon haykin است.

 
جهت خرید جلسه چهارم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/multilayer-perceptron-with-backpropagation-algorithm/

جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 7⃣ جلسه هفتم: پیاده‌سازی الگوریتم یادگیری #دلتا_بار_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم) #نرخ_یادگیری #دلتا_بار_دلتا…
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
7⃣ جلسه هفتم: پیاده‌سازی الگوریتم یادگیری دلتا بار دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم)

در جلسه ششم شروط مورد نیاز جهت تعیین #نرخ_یادگیری بهینه را  توضیح داده و سپس تئوری الگوریتم یادگیری #دلتا_دلتا را در متلب به صورت #گام_به_گام پیاده‌سازی کردیم. و ایرادات اساسی این الگوریتم را توضیح دادیم. در این الگوریتم با اینکه 4 شرط اساسی برای تعیین نرخ یادگیری گنجانده شده بود ولی مشکل اصلی این الگوریتم در نحوه #افزایش و #کاهش نرخ یادگیری است. برای اینکه نرخ یادگیری بهینه ای داشته باشیم لازم است که در جاهایی که #شیب_خطا در چند تکرار متوالی یکسان است نرخ یادگیری به صورت خطی و آهسته زیاد کنیم و از طرفی زمانی که علامت مشتق تابع هزینه در چندین تکرار متوالی متفاوت است لازم است که نرخ یادگیری سریع و به صورت #غیرخطی کم شود تا حالت نوسانی و ناپایدار پیش نیاید. الگوریتم دلتا دلتا همچنین قابلیتی ندارد و در نتیجه نرخ یادگیری بهینه که اساس یادگیری پس انتشار خطا است، را نمیتواند تعیین کند. الگوریتم دلتا بار دلتا برای حل این مسئله مطرح شده است که در این جلسه تئوری آن گفته شده و در متلب پیاده‌سازی می کنیم و در انتها برای اینکه با قابلیت این الگوریتم آشنا شوید و همچنین بتوانید از این الگوریتم در پروژه‎های عملی خودتان استفاده کنید چندین پروژه عملی از قبیل از جلمه #تشخیص_سرطان_سینه (پروژه عملی طبقه‌بندی) ، #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی #رگرسیون) با استفاده از شبکه عصبی پرسپترون چندلایه  انجام شده است و همچنین یک پروژه کلاسبندی #سه_کلاسه iris (#گل_زنبق) انجام شده است تا شما در انجام پروژه های چندکلاسه نیز مشکلی نداشته باشید. داده iris یک داده سه کلاسه معروفی است که آقای #فیشر(Fisher) معرفی کرده اند و یک داده مناسب برای #ارزیابی مدلهای #یادگیری_ماشین است. ما در این جلسه هر سه پروژه را به صورت مرحله به مرحله در متلب پیاده سازی می‌کنیم.

نکته: تمام مباحث ‌این جلسه طبق مطالب فصل 6 کتاب Simon haykin است.
 
💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 8⃣ جلسه هشتم: پیاده‌سازی الگوریتم شبکه عصبی توابع شعاعی پایه(#RBF) #مرکز #سیگما #قضیه_کاور #kmeans #پروژه_عملی #رگرسیون #طبقه‌بندی #کلاسبندی…
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

8⃣ جلسه هشتم: پیاده‌سازی الگوریتم شبکه عصبی توابع شعاعی پایه(#RBF)

ما تا جلسه هفتم تمام تمرکزمون برروی شبکه عصبی معروف پرسپترون بود و این جلسه شبکه عصبی توابع شعاعی پایه(radial basis function) را آموزش می‌دهیم. این شبکه یک شبکه عصبی 3 لایه است که ازیک لایه پنهان تشکیل شده است. از قضیه  جالب #کاور برای حل مسائل پیچیده و غیرخطی استفاده می‌کند و کاربردهای زیادی در عمل دارد. شبکه عصبی rbf رویکرد متفاوتی نسبت به پرسپترون چندلایه دارد و با یک رویکرد بسیار ساده و جالب مسائل پیچیده را حل می‌کند. برخلاف mlp که در آن وزنهای سیناپسی تمام لایه ها باید محاسبه می‌شدند در این شبکه لایه ورودی به صورت #مستقیم و بدون اینکه #وزن_سیناپسی در بین دولایه  باشد به لایه پنهان وصل شده است. نورونهای لایه پنهان این شبکه به عنوان یک #کرنل_غیرخطی (گوسیrbf) عمل می‌کنند و وظیفه #نگاشت داده از فضای #غیرخطی به فضای #خطی را برعهده دارند. هر یک از نورنهای لایه پنهان به یک #مرکز و #سیگمای بهینه نیاز دارند تا به درستی داده را نگاشت دهند، برای محاسبه مراکز و سیگمای مراکز چندین روش مثل الگوریتم خوشه‌بند #kmeans مطرح شده که طبق کتاب این روشها را توضیح داده و در متلب #پیاده‌سازی کرده و مزایا و معایب هر روش را با مثال عملی توضیح می‌دهیم. در این جلسه به صورت مختصر مفهوم #خوشه‌بندی توضیح داده شده و سپس عملکرد الگوریتم kmeans جهت تعیین مراکز را توضیح داده‌ایم.  بعد از پیدا کردن مراکز و سیگماهای بهینه در این شبکه لازم است که وزنهای سیناپسی بین لایه پنهان و لایه خروجی نیز محاسبه شوند که برای محاسبه وزن سیناپسی بهینه سه روش #وینرهاف، #شبه_معکوس و #گرادیان_نزولی را توضیح داده و در متلب پیاده سازی کرده‌ایم. و در انتها چندین مثال و پروژه عملی از قبیل جلمه #تشخیص_سرطان_سینه (پروژه عملی طبقه‌بندی) ، #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی #رگرسیون) و #کلاسبندی داده سه کلاسه iris (#گل_زنبق) با استفاده از شبکه عصبی RBF انجام داده ایم که با کارایی این شبکه عصبی آشنا شده و بتوانید #پروژه‌های_عملی خودتان را با استفاده از این الگوریتم در متلب پیاده‌سازی کنید.

نکته: تمام مباحث ‌این جلسه طبق مطالب فصل 7 کتاب Simon haykin است.


 
💡 جهت خرید جلسه هشتم به لینک زیر مراجعه کنید👇👇👇

https://onlinebme.com/product/rbf/
💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو "فارغ التحصیل دانشگاه علم و صنعت تهران" 9⃣ جلسه نهم: پیاده‌سازی شبکه عصبی Extreme Learning Machine ( #ELM ) #پیاده‌سازی_مقاله #پروژه_عملی #رگرسیون #طبقه‌بندی #کلاسبندی #روشهای_ارزیابی…
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

9⃣ جلسه نهم: پیاده‌سازی شبکه عصبی Extreme Learning Machine ( #ELM )

ما تا جلسه هشتم از مباحث #کتاب معروف   Simon haykin استفاده کردیم و در دو جلسه آینده قصد داریم #پیاده‌سازی دو تا شبکه عصبی معروف #ELM و #PNN را طبق #مقالات_تخصصی آموزش دهیم تا با پیاده‌سازی مقالات تخصصی نیز آشنا شوید. شبکه عصبی #پرسپترون_چندلایه دو ایراد اساسی در زمان آموزش دارد: ایراد اول شبکه این است که از #گرادیان_نزولی برای تنظیم وزنها استفاده می‌کند و این باعث می‎شود که پروسه آموزش زمانبر باشد، مخصوصا زمانی که حجم داده آموزشی زیاد باشد! ایراد دوم این شبکه تعداد زیاد #پارامترها است. در این شبکه پارامترهای زیادی باید در پروسه آموزش تنظیم شوند و همین باعث می‌شود که زمان آموزش بسیار بالا باشد. شبکه عصبی ELM یک رویکرد بسیار ساده‌ای و در عین حال جالب برای حل این مسئله ارائه کرده است و به همین دلیل #سرعت_یادگیری بسیار بالایی دارد و سرعت یادگیری آن در مقایسه با #MLP شاید بتواند گفت 1000 برابر و حتی بیشتر شده است. این شبکه ساختاری همانند #RBF دارد ولی کلا یک پارامتر در طول آموزش تنظیم می‌‌کند. برخلاف RBF که وزنهای سیناپسی بین لایه ورودی و لایه پنهان ثابت و مقدار یک بود، در این شبکه لایه ورودی با یک سری وزن به لایه پنهان وصل شده شده است، البته خوبی #ماجرا اینجا هست که در این شبکه به وزنها یک مقدار #تصادفی در همان ابتدا اختصاص می‌دهند و نیازی نیست در طول آموزش تنظیم شوند. نورونهای لایه پنهان یک نورون معمولی هستند و نیازی به پیدا کردن مراکز و سیگمای هر نورون نیست و در نهایت تنها پارامتر قابل تنظیم این شبکه وزنهای سیناپسی بین لایه پنهان و لایه خروجی است. ELM یک شبکه #رو_به_جلو هست و با استفاده از روش #شبه_معکوس وزنهای سیناپسی را در یک لحظه محاسبه می‌کند. و همین امر باعث شده سرعت یادگیری این شبکه #بسیار_بالا باشد. نکته جالب ماجرا اینجاست که عملکرد این الگوریتم بسیار بالاست و با اینکه تعداد پارامتر قابل تنظیم کمتری دارد ولی عملکرد بسیار خوبی در مقالات برای این الگوریتم گزارش شده است.

🔘 در این ویدیو ما تئوری یادگیری این شبکه را طبق مقاله #به_زبان_ساده توضیح داده و سپس به صورت #مرحله_به_مرحله در متلب پیاده‌سازی کرده‌ایم. و در انتها برای اینکه با کارایی این مدل آشنا شوید چندین #پروژه_عملی از قبیل #تشخیص_سرطان_سینه (پروژه عملی طبقه‌بندی) ، #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی رگرسیون) و کلاسبندی داده سه کلاسه iris ( #گل_زنبق ) با استفاده از شبکه عصبی ELM انجام داده‌ایم.

🔘 ما تا این جلسه برای #ارزیابی شبکه‌های عصبی از روش معمول (the hold out validation method) استفاده می‌کردیم که در آن یکبار داده به دو بخش #آموزش و #تست تقسیم شده و مدل یکبار آموزش و تست می‌شود. زمانی که تعداد داده کم باشد استفاده از این روش ارزیابی مناسب نیست و باید از روشهای استاندارد دیگری استفاده کنیم. ما در این جلسه #روشهای_ارزیابی 
k-fold cross validation، 
random subsampling 
leave one out validation 
را توضیح داده و سپس مرحله به مرحله در متلب پیاده سازی کرده‌ایم و درنهایت پروژه‌های عملی را با استفاده از این روشها ارزیابی می‌کنیم تا با #ارزیابی_استاندارد یک مدل #یادگیری_ماشین آشنا شوید و در پروژه های خود استفاده کنید.

🔺نکته: مباحث ‌این جلسه طبق مطالب مقاله پیوست می‌باشد.

 
💡 جهت خرید جلسه نهم به لینک زیر مراجعه کنید👇👇👇

https://onlinebme.com/product/elm-neural-networks/

💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme