Краткий курс машинного обучения или как создать нейронную сеть для решения скоринг задачи
Мы часто слышим такие словесные конструкции, как «машинное обучение», «нейронные сети». Эти выражения уже плотно вошли в общественное сознание и чаще всего ассоциируются с распознаванием образов и речи, с генерацией человекоподобного текста. На самом деле алгоритмы машинного обучения могут решать множество различных типов задач, в том числе помогать малому бизнесу, интернет-изданию, да чему угодно. В этой статье я расскажу как создать нейросеть, которая способна решить реальную бизнес-задачу по созданию скоринговой модели. Мы рассмотрим все этапы: от подготовки данных до создания модели и оценки ее качества.
Если тебе интересно машинное обучение, то приглашаю в «Мишин Лернинг» — мой субъективный телеграм-канал об искусстве глубокого обучения, нейронных сетях и новостях из мира искусственного интеллекта.
Вопросы, которые разобраны в статье:
• Как собрать и подготовить данные для построения модели?
• Что такое нейронная сеть и как она устроена?
• Как написать свою нейронную сеть с нуля?
• Как правильно обучить нейронную сеть на имеющихся данных?
• Как интерпретировать модель и ее результаты?
• Как корректно оценить качество модели?
Поехали!
#машинное_обучение #нейронные_сети #data_mining #data_science #python #скоринг #эволюционный_алгоритм #градиентный_спуск #оптимизационные_задачи #neural_networks #machine_learning #генетический_алгоритм #genetic_algorithms | @habr_ai
Мы часто слышим такие словесные конструкции, как «машинное обучение», «нейронные сети». Эти выражения уже плотно вошли в общественное сознание и чаще всего ассоциируются с распознаванием образов и речи, с генерацией человекоподобного текста. На самом деле алгоритмы машинного обучения могут решать множество различных типов задач, в том числе помогать малому бизнесу, интернет-изданию, да чему угодно. В этой статье я расскажу как создать нейросеть, которая способна решить реальную бизнес-задачу по созданию скоринговой модели. Мы рассмотрим все этапы: от подготовки данных до создания модели и оценки ее качества.
Если тебе интересно машинное обучение, то приглашаю в «Мишин Лернинг» — мой субъективный телеграм-канал об искусстве глубокого обучения, нейронных сетях и новостях из мира искусственного интеллекта.
Вопросы, которые разобраны в статье:
• Как собрать и подготовить данные для построения модели?
• Что такое нейронная сеть и как она устроена?
• Как написать свою нейронную сеть с нуля?
• Как правильно обучить нейронную сеть на имеющихся данных?
• Как интерпретировать модель и ее результаты?
• Как корректно оценить качество модели?
Поехали!
#машинное_обучение #нейронные_сети #data_mining #data_science #python #скоринг #эволюционный_алгоритм #градиентный_спуск #оптимизационные_задачи #neural_networks #machine_learning #генетический_алгоритм #genetic_algorithms | @habr_ai
Хабр
Краткий курс машинного обучения или как создать нейронную сеть для решения скоринг задачи
Мы часто слышим такие словесные конструкции, как «машинное обучение», «нейронные сети». Эти выражения уже плотно вошли в общественное сознание и чаще всего ассоциируются с распознаванием образов и...
[Перевод] Добро пожаловать в эру глубокой нейроэволюции
От имени команды Uber AI Labs, которая также включает Joel Lehman, Jay Chen, Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such и Xingwen Zhang.
В области обучения глубоких нейронных сетей (DNN) с большим количеством слоев и миллионами соединений, для тренировки, как правило, применяется стохастический градиентный спуск (SGD). Многие полагают, что способность SGD эффективно вычислять градиенты является исключительной особенностью. Однако мы публикуем набор из пяти статей в поддержку нейроэволюции, когда нейронные сети оптимизируются с помощью эволюционных алгоритмов. Данный метод также является эффективным при обучении глубоких нейронных сетей для задач обучения с подкреплением (RL). Uber имеет множество областей, где машинное обучение может улучшить его работу, а разработка широкого спектра мощных подходов к обучению (включая нейроэволюцию), поможет разработать более безопасные и надежные транспортные решения.
Читать дальше →
#reinforcement_learning #обучение_с_подкреплением #эволюционные_стратегии #оптимизация #генетические_алгоритмы #genetic_algorithms #deep_learning #neural_networks | @habr_ai
От имени команды Uber AI Labs, которая также включает Joel Lehman, Jay Chen, Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such и Xingwen Zhang.
В области обучения глубоких нейронных сетей (DNN) с большим количеством слоев и миллионами соединений, для тренировки, как правило, применяется стохастический градиентный спуск (SGD). Многие полагают, что способность SGD эффективно вычислять градиенты является исключительной особенностью. Однако мы публикуем набор из пяти статей в поддержку нейроэволюции, когда нейронные сети оптимизируются с помощью эволюционных алгоритмов. Данный метод также является эффективным при обучении глубоких нейронных сетей для задач обучения с подкреплением (RL). Uber имеет множество областей, где машинное обучение может улучшить его работу, а разработка широкого спектра мощных подходов к обучению (включая нейроэволюцию), поможет разработать более безопасные и надежные транспортные решения.
Читать дальше →
#reinforcement_learning #обучение_с_подкреплением #эволюционные_стратегии #оптимизация #генетические_алгоритмы #genetic_algorithms #deep_learning #neural_networks | @habr_ai
Хабр
Добро пожаловать в эру глубокой нейроэволюции
От имени команды Uber AI Labs, которая также включает Joel Lehman, Jay Chen, Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such и Xingwen Zhang. В области обучения глубоких нейронных сетей (DNN) с...