Marigold-DC
Построение 3D мира стало необходимым с появлением автопилотов для построения карт и планирования маршрутов. Данная статья про одно из решений задачи Depth Completion (получение 3D карты по лидарным точкам и изображениям с камер). Попыталась разобраться в архитектуре Marigold-DC. Надеюсь, будет интересно ❤️
Читать далее
#диффузионные_модели #нейронные_сети #3d_реконструкция #depth_map #карта_глубины #diffusion_models #neural_networks #3d_reconstruction | @habr_ai
Построение 3D мира стало необходимым с появлением автопилотов для построения карт и планирования маршрутов. Данная статья про одно из решений задачи Depth Completion (получение 3D карты по лидарным точкам и изображениям с камер). Попыталась разобраться в архитектуре Marigold-DC. Надеюсь, будет интересно ❤️
Читать далее
#диффузионные_модели #нейронные_сети #3d_реконструкция #depth_map #карта_глубины #diffusion_models #neural_networks #3d_reconstruction | @habr_ai
Хабр
Marigold-DC
Marigold Привет! Сегодня я хочу рассказать про сеточку Marigold-DC решающую задачу Depth Completion. Пользуясь случаем, оставляю ссылку на свой канал: notmagicneuralnetworks Задача Depth Completion...
HaGRIDv2-1M: 1 миллион изображений для распознавания статичных и динамических жестов
Датасет HaGRID, о котором мы писали в одном из постов, — это самый полный набор данных для построения системы распознавания жестов. Он стал очень популярным внутри комьюнити и нашел применение в таких задачах, как обучение и оценка нейронных сетей для распознавания жестов (о чем писали, например, тут и тут), а также в таких неочевидных приложениях, как генерация анатомически корректных рук с помощью диффузионных моделей (об этом можно почитать тут, тут и тут).
Данная статья посвящена расширенной версии датасета — HaGRIDv2-1M. Тут мы подробно расскажем о её отличиях от первой версии, поделимся результатами экспериментов и обсудим новые возможности. Кроме того, мы представляем новый real-time алгоритм для детекции динамических жестов, полностью обученный на HaGRIDv2-1M. Данные, код и предобученные модели можно найти в репозиториях HaGRID, dynamic gestures, а более подробно ознакомиться с работой можно в статьях HaGRIDv2-1M, HaGRID.
Читать далее
#data_mining #computer_vision #human_computer_interaction #gesture_recognition #device_control #datasets #data_science #deep_learning #neural_networks #detection | @habr_ai
Датасет HaGRID, о котором мы писали в одном из постов, — это самый полный набор данных для построения системы распознавания жестов. Он стал очень популярным внутри комьюнити и нашел применение в таких задачах, как обучение и оценка нейронных сетей для распознавания жестов (о чем писали, например, тут и тут), а также в таких неочевидных приложениях, как генерация анатомически корректных рук с помощью диффузионных моделей (об этом можно почитать тут, тут и тут).
Данная статья посвящена расширенной версии датасета — HaGRIDv2-1M. Тут мы подробно расскажем о её отличиях от первой версии, поделимся результатами экспериментов и обсудим новые возможности. Кроме того, мы представляем новый real-time алгоритм для детекции динамических жестов, полностью обученный на HaGRIDv2-1M. Данные, код и предобученные модели можно найти в репозиториях HaGRID, dynamic gestures, а более подробно ознакомиться с работой можно в статьях HaGRIDv2-1M, HaGRID.
Читать далее
#data_mining #computer_vision #human_computer_interaction #gesture_recognition #device_control #datasets #data_science #deep_learning #neural_networks #detection | @habr_ai
Хабр
HaGRIDv2-1M: 1 миллион изображений для распознавания статичных и динамических жестов
Жесты, представленные в датасете HaGRIDv2-1M. Новые жесты, добавленные к жестам из HaGRID, выделены красным В этой статье мы представляем HaGRIDv2-1M — обновлённую и значительно расширенную версию...
Исследуем эволюцию архитектур в Computer Vision: Mind Map всех ключевых моделей
Компьютерное зрение (Computer Vision) пережило невероятную эволюцию за последние десятилетия. От простых свёрточных сетей до сложных архитектур, которые сегодня задают стандарты в распознавании изображений, обработке видео и других задачах. Но как разобраться во всём этом многообразии? Чтобы помочь себе (и вам!) лучше понять основные направления развития, я создал Mind Map , которая объединяет ключевые архитектуры Computer Vision — от классических моделей до современных прорывов.
Читать далее
#computer_vision #mind_maps #deep_learning #machine_learning #машинное_обучение #нейронные_сети #neural_networks #transformers #resnet | @habr_ai
Компьютерное зрение (Computer Vision) пережило невероятную эволюцию за последние десятилетия. От простых свёрточных сетей до сложных архитектур, которые сегодня задают стандарты в распознавании изображений, обработке видео и других задачах. Но как разобраться во всём этом многообразии? Чтобы помочь себе (и вам!) лучше понять основные направления развития, я создал Mind Map , которая объединяет ключевые архитектуры Computer Vision — от классических моделей до современных прорывов.
Читать далее
#computer_vision #mind_maps #deep_learning #machine_learning #машинное_обучение #нейронные_сети #neural_networks #transformers #resnet | @habr_ai
Хабр
Исследуем эволюцию архитектур в Computer Vision: Mind Map всех ключевых моделей
Сразу к карте? Если вы предпочитаете действовать, а не читать, вот ссылка на Mind Map (figma) или ссылка на (pdf) . Она доступна для изучения прямо сейчас. А если хотите понять контекст и узнать...
Мир будущего: управление устройствами с помощью жестов
Видели в кино, как устройствами управляют с помощью жестов? Сделать такую систему очень просто, а ещё очень дорого. Но всё-таки есть способ сделать её достаточно лёгкой и простой — настолько, чтобы можно было интегрировать в любое устройство с любым процессором, потратив минимальное количество денег.
Привет, Хабр! Это Александр Нагаев, техлид из SberDevices команды R&D компьютерного зрения. Расскажу, как создавать и использовать оптимизированные модели для управления устройствами с помощью жестов. Читать далее
#data_mining #computer_vision #detection #neural_networks #data_science #deep_learning #device_control #gesture_recognition #datasets #human_computer_interaction | @habr_ai
Видели в кино, как устройствами управляют с помощью жестов? Сделать такую систему очень просто, а ещё очень дорого. Но всё-таки есть способ сделать её достаточно лёгкой и простой — настолько, чтобы можно было интегрировать в любое устройство с любым процессором, потратив минимальное количество денег.
Привет, Хабр! Это Александр Нагаев, техлид из SberDevices команды R&D компьютерного зрения. Расскажу, как создавать и использовать оптимизированные модели для управления устройствами с помощью жестов. Читать далее
#data_mining #computer_vision #detection #neural_networks #data_science #deep_learning #device_control #gesture_recognition #datasets #human_computer_interaction | @habr_ai
Хабр
Мир будущего: управление устройствами с помощью жестов
Видели в кино, как устройствами управляют с помощью жестов? Сделать такую систему очень просто, а ещё очень дорого. Но всё-таки есть способ сделать её достаточно лёгкой и простой — настолько, чтобы...
Вычисление функции потерь и градиентов в AI переводчике
Привет, Хабр!
Меня зовут Алексей Рудак, я основатель компании Lingvanex, которая разрабатывает решения в области машинного перевода и транскрипции речи. Продолжаю цикл статей о том, как устроен переводчик на нейронных сетях изнутри. И сейчас хочу рассказать про работу функции потерь. Для тренировки модели используется opensource фреймворк OpenNMT-tf.
Статья предоставляет всесторонний обзор вычисления функции потерь в машинном обучении, особенно в контексте моделей последовательностей. Она начинается с подробного описания того, как матрица логитов, генерируемая после преобразований в декодере, обрабатывается через функцию cross_entropy_sequence_loss. Эта функция играет ключевую роль в измерении расхождения между предсказанными выводами и фактическими метками. В статье описаны шаги, включая преобразование логитов в подходящий формат, применение сглаживания меток для создания сглаженных меток и вычисление кросс-энтропийных потерь с использованием softmax. Каждый этап подробно объясняется, чтобы было понятно, как каждый компонент вносит вклад в общую оценку потерь.
Кроме вычисления потерь, статья рассматривает механизм выравнивания, используемый для улучшения работы модели. Описано, как значение потерь корректируется на основе направляемого выравнивания, что позволяет модели лучше учитывать взаимосвязи между исходными и целевыми последовательностями. Также подробно рассматривается процесс вычисления и применения градиентов, иллюстрируя, как оптимизатор обновляет веса модели для минимизации потерь. Читать далее
#машинное_обучение #machinelearning #переводчик #переводчики #машинный_перевод #ии #искусственный_интеллект #языковые_модели #transformers #neural_networks | @habr_ai
Привет, Хабр!
Меня зовут Алексей Рудак, я основатель компании Lingvanex, которая разрабатывает решения в области машинного перевода и транскрипции речи. Продолжаю цикл статей о том, как устроен переводчик на нейронных сетях изнутри. И сейчас хочу рассказать про работу функции потерь. Для тренировки модели используется opensource фреймворк OpenNMT-tf.
Статья предоставляет всесторонний обзор вычисления функции потерь в машинном обучении, особенно в контексте моделей последовательностей. Она начинается с подробного описания того, как матрица логитов, генерируемая после преобразований в декодере, обрабатывается через функцию cross_entropy_sequence_loss. Эта функция играет ключевую роль в измерении расхождения между предсказанными выводами и фактическими метками. В статье описаны шаги, включая преобразование логитов в подходящий формат, применение сглаживания меток для создания сглаженных меток и вычисление кросс-энтропийных потерь с использованием softmax. Каждый этап подробно объясняется, чтобы было понятно, как каждый компонент вносит вклад в общую оценку потерь.
Кроме вычисления потерь, статья рассматривает механизм выравнивания, используемый для улучшения работы модели. Описано, как значение потерь корректируется на основе направляемого выравнивания, что позволяет модели лучше учитывать взаимосвязи между исходными и целевыми последовательностями. Также подробно рассматривается процесс вычисления и применения градиентов, иллюстрируя, как оптимизатор обновляет веса модели для минимизации потерь. Читать далее
#машинное_обучение #machinelearning #переводчик #переводчики #машинный_перевод #ии #искусственный_интеллект #языковые_модели #transformers #neural_networks | @habr_ai
Хабр
Вычисление функции потерь и градиентов в AI переводчике
Привет, Хабр! Меня зовут Алексей Рудак, я основатель компании Lingvanex , которая разрабатывает решения в области машинного перевода и транскрипции речи. Продолжаю цикл статей о том, как устроен...
Краткий курс машинного обучения или как создать нейронную сеть для решения скоринг задачи
Мы часто слышим такие словесные конструкции, как «машинное обучение», «нейронные сети». Эти выражения уже плотно вошли в общественное сознание и чаще всего ассоциируются с распознаванием образов и речи, с генерацией человекоподобного текста. На самом деле алгоритмы машинного обучения могут решать множество различных типов задач, в том числе помогать малому бизнесу, интернет-изданию, да чему угодно. В этой статье я расскажу как создать нейросеть, которая способна решить реальную бизнес-задачу по созданию скоринговой модели. Мы рассмотрим все этапы: от подготовки данных до создания модели и оценки ее качества.
Если тебе интересно машинное обучение, то приглашаю в «Мишин Лернинг» — мой субъективный телеграм-канал об искусстве глубокого обучения, нейронных сетях и новостях из мира искусственного интеллекта.
Вопросы, которые разобраны в статье:
• Как собрать и подготовить данные для построения модели?
• Что такое нейронная сеть и как она устроена?
• Как написать свою нейронную сеть с нуля?
• Как правильно обучить нейронную сеть на имеющихся данных?
• Как интерпретировать модель и ее результаты?
• Как корректно оценить качество модели?
Поехали!
#машинное_обучение #нейронные_сети #data_mining #data_science #python #скоринг #эволюционный_алгоритм #градиентный_спуск #оптимизационные_задачи #neural_networks #machine_learning #генетический_алгоритм #genetic_algorithms | @habr_ai
Мы часто слышим такие словесные конструкции, как «машинное обучение», «нейронные сети». Эти выражения уже плотно вошли в общественное сознание и чаще всего ассоциируются с распознаванием образов и речи, с генерацией человекоподобного текста. На самом деле алгоритмы машинного обучения могут решать множество различных типов задач, в том числе помогать малому бизнесу, интернет-изданию, да чему угодно. В этой статье я расскажу как создать нейросеть, которая способна решить реальную бизнес-задачу по созданию скоринговой модели. Мы рассмотрим все этапы: от подготовки данных до создания модели и оценки ее качества.
Если тебе интересно машинное обучение, то приглашаю в «Мишин Лернинг» — мой субъективный телеграм-канал об искусстве глубокого обучения, нейронных сетях и новостях из мира искусственного интеллекта.
Вопросы, которые разобраны в статье:
• Как собрать и подготовить данные для построения модели?
• Что такое нейронная сеть и как она устроена?
• Как написать свою нейронную сеть с нуля?
• Как правильно обучить нейронную сеть на имеющихся данных?
• Как интерпретировать модель и ее результаты?
• Как корректно оценить качество модели?
Поехали!
#машинное_обучение #нейронные_сети #data_mining #data_science #python #скоринг #эволюционный_алгоритм #градиентный_спуск #оптимизационные_задачи #neural_networks #machine_learning #генетический_алгоритм #genetic_algorithms | @habr_ai
Хабр
Краткий курс машинного обучения или как создать нейронную сеть для решения скоринг задачи
Мы часто слышим такие словесные конструкции, как «машинное обучение», «нейронные сети». Эти выражения уже плотно вошли в общественное сознание и чаще всего ассоциируются с распознаванием образов и...
[Перевод] Добро пожаловать в эру глубокой нейроэволюции
От имени команды Uber AI Labs, которая также включает Joel Lehman, Jay Chen, Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such и Xingwen Zhang.
В области обучения глубоких нейронных сетей (DNN) с большим количеством слоев и миллионами соединений, для тренировки, как правило, применяется стохастический градиентный спуск (SGD). Многие полагают, что способность SGD эффективно вычислять градиенты является исключительной особенностью. Однако мы публикуем набор из пяти статей в поддержку нейроэволюции, когда нейронные сети оптимизируются с помощью эволюционных алгоритмов. Данный метод также является эффективным при обучении глубоких нейронных сетей для задач обучения с подкреплением (RL). Uber имеет множество областей, где машинное обучение может улучшить его работу, а разработка широкого спектра мощных подходов к обучению (включая нейроэволюцию), поможет разработать более безопасные и надежные транспортные решения.
Читать дальше →
#reinforcement_learning #обучение_с_подкреплением #эволюционные_стратегии #оптимизация #генетические_алгоритмы #genetic_algorithms #deep_learning #neural_networks | @habr_ai
От имени команды Uber AI Labs, которая также включает Joel Lehman, Jay Chen, Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such и Xingwen Zhang.
В области обучения глубоких нейронных сетей (DNN) с большим количеством слоев и миллионами соединений, для тренировки, как правило, применяется стохастический градиентный спуск (SGD). Многие полагают, что способность SGD эффективно вычислять градиенты является исключительной особенностью. Однако мы публикуем набор из пяти статей в поддержку нейроэволюции, когда нейронные сети оптимизируются с помощью эволюционных алгоритмов. Данный метод также является эффективным при обучении глубоких нейронных сетей для задач обучения с подкреплением (RL). Uber имеет множество областей, где машинное обучение может улучшить его работу, а разработка широкого спектра мощных подходов к обучению (включая нейроэволюцию), поможет разработать более безопасные и надежные транспортные решения.
Читать дальше →
#reinforcement_learning #обучение_с_подкреплением #эволюционные_стратегии #оптимизация #генетические_алгоритмы #genetic_algorithms #deep_learning #neural_networks | @habr_ai
Хабр
Добро пожаловать в эру глубокой нейроэволюции
От имени команды Uber AI Labs, которая также включает Joel Lehman, Jay Chen, Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such и Xingwen Zhang. В области обучения глубоких нейронных сетей (DNN) с...
LIME for ECG Time Series Dataset Example
LIME (Local Interpretable Model-Agnostic Explanations) — популярный модет в решении задачи интерпретации. Он основан на простой идее — приблизить прогнозы сложного оценщика (например, нейронной сети) простым — обычно линейной/логистической регрессией.
Применить LIME можно из коробки при помощи одноименной библиотеки [lime]. Однако, при применении LIME к, в частности, к временным рядам возникают особенности. Поэтому в чистом виде lime для TimeSeries не всегда легко применить. И в этом туториале мы сделаем приближенение метода самостотельно! :) Читать далее
#explanation #xai #convolutional_neural_network #neural_networks #machine_learning | @habr_ai
LIME (Local Interpretable Model-Agnostic Explanations) — популярный модет в решении задачи интерпретации. Он основан на простой идее — приблизить прогнозы сложного оценщика (например, нейронной сети) простым — обычно линейной/логистической регрессией.
Применить LIME можно из коробки при помощи одноименной библиотеки [lime]. Однако, при применении LIME к, в частности, к временным рядам возникают особенности. Поэтому в чистом виде lime для TimeSeries не всегда легко применить. И в этом туториале мы сделаем приближенение метода самостотельно! :) Читать далее
#explanation #xai #convolutional_neural_network #neural_networks #machine_learning | @habr_ai
GitHub
GitHub - marcotcr/lime: Lime: Explaining the predictions of any machine learning classifier
Lime: Explaining the predictions of any machine learning classifier - marcotcr/lime
LIME for ECG Time Series Dataset Example
LIME (Local Interpretable Model-Agnostic Explanations) — популярный модет в решении задачи интерпретации. Он основан на простой идее — приблизить прогнозы сложного оценщика (например, нейронной сети) простым — обычно линейной/логистической регрессией.
Применить LIME можно из коробки при помощи одноименной библиотеки [lime]. Однако, при применении LIME к, в частности, к временным рядам возникают особенности. Поэтому в чистом виде lime для TimeSeries не всегда легко применить. И в этом туториале мы сделаем приближенение метода самостотельно! :) Читать далее
#explanation #xai #convolutional_neural_network #neural_networks #machine_learning | @habr_ai
LIME (Local Interpretable Model-Agnostic Explanations) — популярный модет в решении задачи интерпретации. Он основан на простой идее — приблизить прогнозы сложного оценщика (например, нейронной сети) простым — обычно линейной/логистической регрессией.
Применить LIME можно из коробки при помощи одноименной библиотеки [lime]. Однако, при применении LIME к, в частности, к временным рядам возникают особенности. Поэтому в чистом виде lime для TimeSeries не всегда легко применить. И в этом туториале мы сделаем приближенение метода самостотельно! :) Читать далее
#explanation #xai #convolutional_neural_network #neural_networks #machine_learning | @habr_ai
Хабр
LIME for ECG Time Series Dataset Example
LIME (Local Interpretable Model-Agnostic Explanations) — популярный метод в решении задачи интерпретации. Он основан на простой идее — приблизить прогнозы сложного оценщика (например, нейронной сети)...
Правда ли KAN лучше MLP? Свойство разделения глубины между двумя архитектурами
Прошлым летом в свет вышла новая архитектура нейронных сетей под названием Kolmogorov-Arnold Networks (KAN). На момент выхода статьи про KAN эта новость произвела фурор в мире машинного обучение, так как KAN показывала существенный прирост в качестве аппроксимации различных сложных функций. Ошибка новых сетей падает значительно быстрее при увеличении числа параметров. Однако, за все приходится платить, и цена таких маленьких значений функции ошибки - медленное обучение: KAN обучается примерно в 10 раз медленнее, чем старый добрый MLP. Из всего этого возникает вопрос: насколько все же уместно использование новой архитектуры вместо привычных всем MLP?
В данной статье будет найдена функция, которая может быть реализована с помощью двухслойного KAN полиномиальной ширины, но не может быть приближена никакой двухслойной ReLU MLP сетью с полиномиальной шириной Читать далее
#kan #mlp #approximation #math #machine_learning #deep_learning #science #neural_networks #research | @habr_ai
Прошлым летом в свет вышла новая архитектура нейронных сетей под названием Kolmogorov-Arnold Networks (KAN). На момент выхода статьи про KAN эта новость произвела фурор в мире машинного обучение, так как KAN показывала существенный прирост в качестве аппроксимации различных сложных функций. Ошибка новых сетей падает значительно быстрее при увеличении числа параметров. Однако, за все приходится платить, и цена таких маленьких значений функции ошибки - медленное обучение: KAN обучается примерно в 10 раз медленнее, чем старый добрый MLP. Из всего этого возникает вопрос: насколько все же уместно использование новой архитектуры вместо привычных всем MLP?
В данной статье будет найдена функция, которая может быть реализована с помощью двухслойного KAN полиномиальной ширины, но не может быть приближена никакой двухслойной ReLU MLP сетью с полиномиальной шириной Читать далее
#kan #mlp #approximation #math #machine_learning #deep_learning #science #neural_networks #research | @habr_ai
Хабр
Правда ли KAN лучше MLP? Свойство разделения глубины между двумя архитектурами
Введение Прошлым летом в свет вышла новая архитектура нейронных сетей под названием Kolmogorov-Arnold Networks (KAN). Основная статья есть в открытом доступе на архиве по следующей ссылке . На момент...