Хабр / ML & AI
483 subscribers
5.48K links
Telegram-канал, где вы можете найти публикации из RSS-фидов тематических хабов "Машинное обучение" и "Искусственный интеллект" портала Хабр.

Данный канал не является официальным представительством платформы Хабр.

Администратор - @evilfreelancer
Download Telegram
Как простые NLP модели видят слова? | NLP | Пишем свой TF-IDF

Когда начинаешь погружаться в сферу NLP, сразу задумываешься, как модели представляют себе наш текст/наши слова? Ведь не логично бы звучало, если модель обрабатывала наши слова, как обычную последовательность букв. Это было бы не удобно и не понятно(как проводить операции со словами?).

Есть разные методы преобразования слов. Один из самых известных для не самых сложных моделей: TF-IDF.

Читать далее

#nlp #ai #machinelearning #deeplearning #python #tfidfvectorizer #numpy #pandas #math #jupyter_notebook | @habr_ai
[Перевод] Создание искусственных сомнений значительно повышает точность математических вычислений ИИ

Языковые модели лучше справляются с математикой при использовании "верифицируемой траектории рассуждений"

(обзор модели rStar-Math)

Что делает ИИ-систему хорошей в математике? Не сырая вычислительная мощность, а нечто почти противоречивое: невротичная тщательность в проверке своей правоты.

Когда исследователи ИИ говорят о математических рассуждениях, они обычно сосредотачиваются на масштабировании — более крупных моделях, большем количестве параметров, объёмных датасетах. Но на практике математические способности не зависят от объема вычислительных ресурсов вашей модели. Всё дело в том, могут ли машины научиться проверять собственную работу, поскольку не менее 90% ошибок в рассуждениях возникают из-за того, что модели уверенно утверждают неверные промежуточные шаги.

Полагаю, это звучит очевидно, когда понимаешь суть. Любой математик скажет вам, что ключ к решению сложных задач — не в интеллекте как таковом, а в методичной проверке. Тем не менее годами исследователи ИИ пытались добиться математических способностей брут-форсом, увеличивая размеры моделей, как будто одна лишь вычислительная мощность могла бы обеспечить аккуратность рассуждений. Читать далее

#math #llm_модели #машинное_обучение #нейросети #анализ_данных #научные_исследования | @habr_ai
Правда ли KAN лучше MLP? Свойство разделения глубины между двумя архитектурами

Прошлым летом в свет вышла новая архитектура нейронных сетей под названием Kolmogorov-Arnold Networks (KAN). На момент выхода статьи про KAN эта новость произвела фурор в мире машинного обучение, так как KAN показывала существенный прирост в качестве аппроксимации различных сложных функций. Ошибка новых сетей падает значительно быстрее при увеличении числа параметров. Однако, за все приходится платить, и цена таких маленьких значений функции ошибки - медленное обучение: KAN обучается примерно в 10 раз медленнее, чем старый добрый MLP. Из всего этого возникает вопрос: насколько все же уместно использование новой архитектуры вместо привычных всем MLP?

В данной статье будет найдена функция, которая может быть реализована с помощью двухслойного KAN полиномиальной ширины, но не может быть приближена никакой двухслойной ReLU MLP сетью с полиномиальной шириной Читать далее

#kan #mlp #approximation #math #machine_learning #deep_learning #science #neural_networks #research | @habr_ai