Хабр / ML & AI
481 subscribers
5.47K links
Telegram-канал, где вы можете найти публикации из RSS-фидов тематических хабов "Машинное обучение" и "Искусственный интеллект" портала Хабр.

Данный канал не является официальным представительством платформы Хабр.

Администратор - @evilfreelancer
Download Telegram
Мозг промышленного масштаба или как воплотить мечту в реальность?
В предыдущей статье мы рассмотрели различные типы нейросетей и обсудили, какие задачи можно решать с их помощью. Теперь рассмотрим задачу искусственного интеллекта с организационной и технической точки зрения. При работе над сложными проектами обычно вовлечена команда разработчиков и специалистов по обработке данных, у которых сразу возникают вопросы: как управлять проектом, совместно разрабатывать модель машинного обучения (Machine Learning model), проводить ее тестирование, каким образом синхронизировать код и результаты экспериментов? После разработки и оптимизации ML-модели возникает необходимость ее развертывания в промышленной среде. Все эти проблемы могут казаться менее увлекательными, чем решение самой задачи машинного обучения, но они имеют критическое значение для успешной реализации ML-проектов. В этой статье мы подробно рассмотрим жизненный цикл ML-сервиса от идеи до разработки и внедрения, а также инструменты и принципы, используемые на каждом этапе. Читать далее

#mlflow #mlops #mlops_tools #data_analysis #data_science #ml_модель #ml_инженер #docker #kubernetes #project_management | @habr_ai
[Перевод] Операции машинного обучения (MLOps) для начинающих: полное внедрение проекта

Разработка, развёртывание и поддержка моделей машинного обучения в продакшене может быть сложной и трудоёмкой задачей. Здесь на помощь приходит Machine Learning Operations (MLOps) — набор практик, который автоматизирует управление ML-процессами и упрощает развёртывание моделей. В этой статье я расскажу о некоторых основных практиках и инструментах MLOps на примере реализации проекта от начала до конца. Это поможет вам эффективнее управлять ML-проектами, начиная с разработки и заканчивая мониторингом в продакшене.

Прочитав эту статью, вы узнаете, как:

— Использовать DVC для версионирования данных.

— Отслеживать логи, артефакты и регистрировать версии моделей с помощью MLflow.

— Развернуть модель с помощью FastAPI, Docker и AWS ECS.

— Отслеживать модель в продакшене с помощью Evidently AI.

Читать далее

#mlops #машинное_обучение #mlops_tools #docker #fastapi | @habr_ai
To Docker or not to Docker? Вот в чём JupyterLab

Локальная работа в Jupyter-ноутбуках – неотъемлемая часть исследований и экспериментов нашего ML-отдела. Но из какой среды эти ноутбуки лучше запускать?

Мы пользуемся двумя вариантами: запуском из Docker-контейнера и запуском в изолированном локальном poetry-окружении.

В статье соберем минимальный сетап для работы с Jupyter-ноутбуками и ссылки на полезные ресурсы для ознакомления. Читать далее

#poetry #docker #docker_compose #mlops #ml #jupyterlab #jupyter #jupyter_notebook #infrastructure #mlops_tools | @habr_ai
Как и зачем мы в YADRO сделали свою MLOps-платформу

В нашей компании есть много проектов, связанных с AI. Всем им нужны ресурсы для работы с моделями на GPU. «Хотим, чтобы только мы имели доступ к оборудованию», — это лишь одно из требований инженеров из AI-дивизиона, а еще нужно оптимизировать использование GPU-ресурсов, вести их учет и быстро подготавливать оборудование к передаче другой команде.

Привет, Хабр! Меня зовут Вадим Извеков, я руководитель группы сопровождения платформы машинного обучения в YADRO. Сегодня расскажу, почему мы решили создать свою MLOps-платформу, как она устроена и для чего используется.  Читать далее

#mlops #mlops_tools #mlops_конвейер #llm_модели #llm_приложения | @habr_ai