Удалённое исполнение кода в ML: подходы и инструменты. Доклад Яндекса
Всем привет. На связи Артём Гойлик @ArtoLord и Владислав Волох @Chillintano из команды DataSphere в Yandex Cloud. Мы создаём инфраструктуру для ML-разработчиков. И сегодня расскажем про одну задачу, которая, как и многие другие, начиналась с болей наших пользователей.
Читать далее
#mlops #mlops_tools #pypi #datasphere #python #неймспейсы #опенсорс | @habr_ai
Всем привет. На связи Артём Гойлик @ArtoLord и Владислав Волох @Chillintano из команды DataSphere в Yandex Cloud. Мы создаём инфраструктуру для ML-разработчиков. И сегодня расскажем про одну задачу, которая, как и многие другие, начиналась с болей наших пользователей.
Читать далее
#mlops #mlops_tools #pypi #datasphere #python #неймспейсы #опенсорс | @habr_ai
Хабр
Удалённое исполнение кода в ML: подходы и инструменты. Доклад Яндекса
Всем привет. На связи Артём Гойлик @ArtoLord и Владислав Волох @Chillintano из команды DataSphere в Yandex Cloud. Мы создаём инфраструктуру для ML‑разработчиков. И сегодня...
Агрегация данных для аналитики продаж с помощью DataSphere Jobs и Airflow SDK
В маркетинге и продажах крупных компаний есть несколько аналитических задач, которые требуют регулярной обработки сотен тысяч и миллионов записей из разных источников. Например, это прогнозирование продаж или планирование рекламных кампаний. Как правило, их решение не обходится без построения длинного пайплайна обработки данных. ML‑инженеру или аналитику данных нужен ансамбль из нескольких моделей и сервисов, чтобы собрать качественный датасет, провести эксперименты и выбрать наиболее подходящие алгоритмы.
Сбор, очистка и агрегация данных занимают большую часть времени и вычислительных ресурсов, а эти затраты хочется оптимизировать. В статье покажем, как мы ускорили построение пайплайнов обработки данных с помощью связки DataSphere Jobs и Apache Airflow™.
Читать далее
#apache_airflow #datasphere #пайплайн #dag | @habr_ai
В маркетинге и продажах крупных компаний есть несколько аналитических задач, которые требуют регулярной обработки сотен тысяч и миллионов записей из разных источников. Например, это прогнозирование продаж или планирование рекламных кампаний. Как правило, их решение не обходится без построения длинного пайплайна обработки данных. ML‑инженеру или аналитику данных нужен ансамбль из нескольких моделей и сервисов, чтобы собрать качественный датасет, провести эксперименты и выбрать наиболее подходящие алгоритмы.
Сбор, очистка и агрегация данных занимают большую часть времени и вычислительных ресурсов, а эти затраты хочется оптимизировать. В статье покажем, как мы ускорили построение пайплайнов обработки данных с помощью связки DataSphere Jobs и Apache Airflow™.
Читать далее
#apache_airflow #datasphere #пайплайн #dag | @habr_ai
Хабр
Агрегация данных для аналитики продаж с помощью DataSphere Jobs и Airflow SDK
В маркетинге и продажах крупных компаний есть несколько аналитических задач, которые требуют регулярной обработки сотен тысяч и миллионов записей из разных источников. Например, это...