Хабр / ML & AI
479 subscribers
5.47K links
Telegram-канал, где вы можете найти публикации из RSS-фидов тематических хабов "Машинное обучение" и "Искусственный интеллект" портала Хабр.

Данный канал не является официальным представительством платформы Хабр.

Администратор - @evilfreelancer
Download Telegram
Всем про LLM. Как рассказать про трансформеры одинаково хорошо и индустриалам, и исследователям

Привет, Хабр. Меня зовут Вика, я работаю в AIRI, преподаю в Школе Анализа Данных и Сколтехе и вместе со своими коллегами занимаюсь обработкой естественного языка, изображений и видео, а также иными задачами, где могли бы пригодиться трансформерные модели. Трансформерные архитектуры — очень мощное орудие, которые может быть применено почти во всех сферах DL, и интереснейший концепт, в котором много потенциала для исследования. А, главное, их очень легко применить к технологиям, которые способны изменить нашу жизнь здесь и сейчас.

На словах всё красиво. Но три года назад мы заметили, что и магистры, и работники индустрии, связанной с AI, часто просят «объяснить, как же все‑таки работают трансформеры, потому что из научной статьи ничего не понятно». Так происходит из‑за того, что многое, что в статьях считается очевидным и само собой разумеющимся, очень плохо разъясняется в учебной литературе или существующих курсах. Как следствие, многие не могут использовать трансформеры для решения практических задач и реализации своих идей.

Эта трудность побудила нас создать полноценный курс по трансформерам, в котором проработаны такие проблемные точки и который адаптирован для студентов с разным профессиональным бэкграундом. О нём я и расскажу в этой статье.

Мы уже апробировали курс на лекциях в Сколтехе, МГУ и Сбер Университете, и написали в AIRI о нём статью, которую представили на воркшопе по преподаванию на одной из самых популярных мировых конференций по NLP — ACL-2024. Материалы академической версии курса можно найти в нашем репозитории.

Приятного чтения!

Читать далее

#трансформеры #преподавание #llm #computational_linguistics #image_processing #tabular_data #time_series #quantization #distillation | @habr_ai