Анализ данных (Data analysis)
45.2K subscribers
2.12K photos
232 videos
1 file
1.91K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
🖥 financial-data-analyst — набор советов и гайдов для быстрого старта работы с Claude AI для анализа финансовых данных.

Он показывает, как использовать возможности ИИ для обработки и анализа финансовой информации с помощью Claude, предлагая готовые к работе шаблоны и сценарии для анализа

▪️Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 Интересная статья, которая посвящена методу под названием Self-Taught Reasoner (STaR), который улучшает способность языковых моделей выполнять сложные задачи, требующие пошагового рассуждения

🌟 STaR использует небольшое количество примеров рассуждений и большое количество данных без них для обучения модели. Этот метод включает в себя генерацию обоснований, исправление ошибок и дообучение модели на правильных результатах. STaR показал значительное улучшение по сравнению с обычными моделями в задачах на логику и здравый смысл

🔗 Ссылка: *клик*

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🌟 LayerSkip: метод ускорения инференса в LLM.

LayerSkip - это способ ускорить LLM, уменьшая количество вычислений, необходимых для обработки каждого слова (токена) текста.

Основная идея LayerSkip - научить модель "угадывать" результат раньше, не проходя все слои. Для этого во время обучения модели некоторые слои "исключаются" (layer dropout) случайным образом. Помимо исключения слоев, LayerSkip использует специальную функцию потерь, которая помогает модели "понимать" результаты вычислений на более ранних слоях.

В отличие от других методов, LayerSkip использует одну и ту же LM head для всех слоев модели. Это упрощает обучение и уменьшает потребление памяти при инференсе.

Во время инференса LayerSkip обрабатывает текст только первыми "E" слоями, а затем сразу переходит к LM head, чтобы получить результат. Это называется "ранний выход" (early exit).

Чтобы повысить точность при раннем выходе, LayerSkip использует метод "самоспекулятивного декодирования". Модель сначала "угадывает" несколько следующих токенов, используя ранний выход. Затем она проверяет эти токены, используя оставшиеся слои, и исправляет ошибки.

LayerSkip был протестирован на различных наборах данных: Llama, CodeLlama и TOPv2. Результаты показали, что LayerSkip может ускорить работу LLM до 2 раз без значительного снижения точности.

Чтобы попробовать LayerSkip локально, разработчики предлагают использовать любую из 6 предобученных моделей:

🟢Llama2 - 7B и 13B;
🟢Codellama-7B или 34В;
🟢Llama3-8B:
🟢Llama3.2-1B.

⚠️ Для локального запуска будет нужен Huggingface API KEY.

▶️Локальный запуск:

# Clone repo
git clone git@github.com:facebookresearch/LayerSkip.git
cd LayerSkip

# Create env
conda create --name layer_skip python=3.10
conda activate layer_skip

# Install requirements
$ pip install -r requirements.txt

#Inference with self speculative
$ torchrun generate.py --model facebook/layerskip-llama2-7B \
--sample True \
--max_steps 512 \
--generation_strategy self_speculative \
--exit_layer 8 \
--num_speculations 6


▶️Ключи запуска:

--model: имя модели на HuggingFace;
--sample: включение/выключение семплирования (по умолчанию: True);
--max_steps: максимальное количество генерируемых токенов;
--generation_strategy: стратегия генерации (по умолчанию: 'greedy', для LayerSkip: 'self_speculative');
--exit_layer: номер слоя для раннего выхода;
--num_speculations: количество спекулятивных токенов;


🟡Коллекция моделей на HF
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #MetaAI #LayerSkip
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 arXiver — это огромный датасет на Hugging Face, который содержит 138 тысяч научных статей, загруженных с сайта arXiv.org!

🌟 Этот набор данных предназначен для анализа и обработки научных публикаций с использованием методов машинного обучения. Он охватывает статьи из разных областей, таких как физика, математика, компьютерные науки, и предоставляет возможность для создания NLP моделей на основе научного текста.

🔗 Ссылка: *клик*

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 В этом гайде показано как использовать Qwen-2.5 в качестве интерпретатора кода.

🌟 Модель способна обрабатывать запросы, генерировать и интерпретировать код для различных вычислительных задач и анализа данных.

Этот инструмент особенно полезен для тестирования моделей и работы с данными.

🔗 Ссылка: *клик*

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🤗 Вышла Transformers.js версия 3!

Поддержка веб-графических процессоров (до 100 раз быстрее, чем WASM)
🔢 Новые форматы квантования (dtypes)
Всего поддерживается 120 архитектур
📂 25 новых примеров проектов и шаблонов
Более 1200 предварительно сконвертированных моделей
Node.js Совместимость с ESM + CJS, Deno и Bun

Начните работу с npm i @huggingface/transformers

https://huggingface.co/blog/transformersjs-v3

@data_analysis_ml
Forwarded from Machinelearning
⚡️ FatLlama-1.7T

Зачем кому-то создавать FatLlama-1.7T? Серьезно, в чем смысл?

Однажды вы просыпаетесь и думаете: "Знаете, что нам нужно? Такая огромная модель, чтобы даже облака занервничали". Это все равно что решить построить ракету только для того, чтобы сгонять в супермаркет.

Конечно, это впечатляет, но кто будет ее запускать? Скорее всего, не вы, если только ваш ПК не является нелегальным ядерным реактором.

И что же она умеет? Может быть, предсказывать ваши электронные письма еще до того, как вы подумаете их написать, или просто станет очень хорошо находить в сети видео с котами, кто ж знает...

Вопрос в том, создаем ли мы эти гигантские модели, потому что можем или потому что нам есть что показать Вселенной?

FatLlama-1.7T - это не столько ИИ, сколько "подержите мое пиво, я собираюсь запустить эту штуку".

И вот она, FatLlama-1.7T, которая займет ВСЕ место на вашем жестком диске. Забудьте о сохранении семейных фотографий или драгоценном архиве книг, которые вы никогда не прочитаете. Вам же не так уж и нужны были эти жалкие 3 ТБ свободного места, правда? Зато теперь у вас есть цифровой гигант.

Квантованные версии? Да не вопрос, удачи с запуском, держитесь там.

Даже если каким-то чудом вам удастся запустить FatLlama-1.7T, не спешите расслабляться, ведь вы знаете, что будет дальше, верно? FatLlama 3T.

К тому времени, когда вы выработаете максимум энергии и превратите свой дом в центр обработки данных, чтобы запустить свежую FatLlama 3T, я перейду к FatLlama 5.8T, для которой, вероятно, потребуется маленькая галактика в качестве источника энергии.

Вызов принят? 😁

🟡Модель
🟡Набор GGUF

@ai_machinelearning_big_data

#AI #ML #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🔥 Видео от университета Стэнфорда о создании больших языковых моделей!

💡 Это видео — краткий обзор создания модели, подобной ChatGPT, охватывающий как предварительное обучение модели, так и последующее обучение (SFT/RLHF).

В видео рассматриваются общие практики сбора данных, алгоритмы и методы оценки модели.

🕞 Продолжительность: 1:44:30

🔗 Ссылка: *клик*

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ CtrLoRA: Расширяемая и эффективная платформа для генерации управляемых изображений

Сперва обучается ControlNet с LORA, настроенный на конкретные задачи, с использованием крупномасштабного датасета.

Затем базовая сеть ControlNet может быть эффективно адаптирована к новым задачам с помощью новой LoRa, которой необходимо всего 1000 изображений и менее 1 часа на одном графическом процессоре.

Это сокращает количество параметров на 90%, что значительно упрощает создание новых условий управления.

▪️Github
▪️Статья
▪️Модель

@data_analysis_ml
This media is not supported in your browser
VIEW IN TELEGRAM
🔈 Vocal Remover — бесплатный онлайн-инструмент для разделения вокала и музыкального сопровождения в треках, улучшения качества аудио а также изменение высоты тона и скорости трека!

🔗 Ссылка: *клик*

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Небольшой курс от Anthropic по промпт-инженерингу!

🌟 Этот курс включает примеры, советы и задачи, направленных на улучшение точности и надежности ответов модели.

Он предназначен для того, чтобы вы могли глубже понять принципы работы с большими языковыми моделями и лучше управлять результатами генерации, повышая качество и соответствие запросов и ответов моделей!

🖥 Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🎓 LongVU

LongVU, видеоредактор с пространственно-временным механизмом адаптивного сжатия, предназначенный для понимания видео продолжительностью в час в реальном времени. LongVU адаптивно сокращает количество видео-маркеров, используя (1) сходство функций DINOv2 в разных кадрах, (2) Кросс-модальное сходство текстовых кадров и (3) сходство временных кадров.

1. Высокое качество работы: 67,6% на EgoSchema, 66,9% на MVBench, 65,4% на MLVU и 59,5% на VideoMME long
2. повышение точности в среднем на 5% в различных тестах понимания видео по сравнению с LLaVA-OneVision и VideoChat2
3. Модель, LongVU-3B, также значительно превзошла аналоги 4B, такие как VideoChat2(Phi-3) и Phi-3.5-vision-instruct, по производительности.

📝Статья: https://huggingface.co/papers/2410.17434
💻Код: https://github.com/Vision-CAIR/LongVU
🚀Проект (демо): https://vision-cair.github.io/LongVU

@data_analysis_ml
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Brush — это инструмент для создания 3D-моделей с помощью метода Gaussian splatting.

Онаработает на разных платформах: macOS, Windows, Linux и Android.

Программа позволяет создать 3D модель объекта, используя множество фотографий этого объекта под разными углами.

*Brust написан на я Rust. В нём используются библиотеки wgpu и Burn, которые позволяют создавать независимые бинарные файлы и запускать их на различных устройствах.

📌 Ссылка на репозиторий Brush

@data_analysis_ml
🎮 Quake3LLM - это проект, который позволяет создавать ботов для игры Quake 3 Arena, используя язык программирования C++.

Боты общаются между собой и игроками посредством Llama.cpp. В целом, тексты, генерируемые этими ботами, выглядят нормально, но иногда встречаются странные фразы.

Проект доступен на GitHub по ссылке https://github.com/jmarshall23/Quake3LLM.

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔦Компания alvinzhang только что выпустила версию IC-Light v2

IC-Light v2 теперь работает на FLUX и является лучшим инструментом для редактирования освещения 🌐

Попробуйте официальную демку 📣 https://huggingface.co/spaces/lllyasviel/iclight-v2

@data_analysis_ml