🦅 Korvus — RAG-пайплайн в одном SQL-запросе. Библиотека объединяет векторизацию, семантический поиск и генерацию ответов в единый Postgres-запрос. Работает через расширения pgvector и pgml, заменяя сложные микросервисные архитектуры простым вызовом из Python/JS/Rust.
Инструмент локально выполняет все этапы (от чанкинга текста до работы LLM) прямо в базе данных. Подходит для проектов, где важны скорость и минимальная инфраструктурная нагрузка.
🤖 Github
@data_analysis_m
Инструмент локально выполняет все этапы (от чанкинга текста до работы LLM) прямо в базе данных. Подходит для проектов, где важны скорость и минимальная инфраструктурная нагрузка.
🤖 Github
@data_analysis_m
👍14❤5🥰2
🚀 NVIDIA представила **Nemotron-Nano v2** — новую линейку открытых моделей
Модели:
- 12B Base
- 9B Reasoning
- 9B Base
Архитектура: Hybrid Mamba2–Transformer (128K контекст, 4 attention-слоя)
Обучение: 10.6T токенов (из них 3.5T синтетика: DeepSeek, Qwen, Nemotron-4, phi-4 и др.)
Языки: 15 естественных + 43 языка программирования
Датасеты: Nemotron-CC v2 + Nemotron-CC-Math (133B токенов, 5.5× FineMath)
🔥 Бенчмарки
- Математика: 91.4 GSM8K CoT, 63.6 MATH L5, AIME 30→56.7
- Код: 58.5 HumanEval+, 58.9 MBPP+
- Общие знания: 90.7 ARC, 79.9 HellaSwag
- Длинный контекст: 82.2 RULER-128K
✨ Особенности
- Nemotron-CC-Math — первый масштабируемый пайплайн с Lynx + LLM cleanup для сохранения LaTeX и кода. Дал SOTA-буст (+12.6 MATH, +14.3 MBPP+).
- Эффективность: дистилляция 12B → 9B (480B токенов), ~1.5e24 FLOPs, ~724 MWh.
- Деплой: Hugging Face, NGC, NeMo, TRT-LLM, vLLM (GPU-оптимизация).
- Открытость: релиз моделей, датасетов и полных пайплайнов извлечения.
📌 Nemotron-Nano v2 сочетает сильную математику, код и длинный контекст в компактных моделях, готовых к реальному использованию.
🟠 MODELS: https://huggingface.co/collections/nvidia/nvidia-nemotron-689f6d6e6ead8e77dd641615
🟠 SETS: https://huggingface.co/collections/nvidia/nemotron-pre-training-dataset-689d9de36f84279d83786b35
🟠 RELEASE: https://research.nvidia.com/labs/adlr/NVIDIA-Nemotron-Nano-2/
@data_analysis_m
Модели:
- 12B Base
- 9B Reasoning
- 9B Base
Архитектура: Hybrid Mamba2–Transformer (128K контекст, 4 attention-слоя)
Обучение: 10.6T токенов (из них 3.5T синтетика: DeepSeek, Qwen, Nemotron-4, phi-4 и др.)
Языки: 15 естественных + 43 языка программирования
Датасеты: Nemotron-CC v2 + Nemotron-CC-Math (133B токенов, 5.5× FineMath)
🔥 Бенчмарки
- Математика: 91.4 GSM8K CoT, 63.6 MATH L5, AIME 30→56.7
- Код: 58.5 HumanEval+, 58.9 MBPP+
- Общие знания: 90.7 ARC, 79.9 HellaSwag
- Длинный контекст: 82.2 RULER-128K
✨ Особенности
- Nemotron-CC-Math — первый масштабируемый пайплайн с Lynx + LLM cleanup для сохранения LaTeX и кода. Дал SOTA-буст (+12.6 MATH, +14.3 MBPP+).
- Эффективность: дистилляция 12B → 9B (480B токенов), ~1.5e24 FLOPs, ~724 MWh.
- Деплой: Hugging Face, NGC, NeMo, TRT-LLM, vLLM (GPU-оптимизация).
- Открытость: релиз моделей, датасетов и полных пайплайнов извлечения.
📌 Nemotron-Nano v2 сочетает сильную математику, код и длинный контекст в компактных моделях, готовых к реальному использованию.
@data_analysis_m
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤5🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
— Сэм, выбери таблетку: красную или синюю.
— А можно API-доступ к обеим?
Please open Telegram to view this post
VIEW IN TELEGRAM
😁28❤7👍4🥰1
Forwarded from Machinelearning
Ландшафт архитектур LLM превратился в настоящий зоопарк. Почти каждую неделю появляются новые методы, обещающие меньший расход памяти и более быстрый инференс. Разобраться в этом становится все сложнее.
Большая группа исследователей выпустила подробный обзор Speed Always Wins, чтобы систематизировать все ключевые инновации в области эффективных архитектур для LLM.
Это не просто очередная статья, а попытка упорядочить и структурировать актуальные подходы, которые решают главную проблему классического трансформера - его квадратичную вычислительную сложность.
Обзор описывает 7 основных направлений.
Здесь авторы разбирают все подходы, которые так или иначе сводят сложность самовнимания к линейной. В эту категорию попадают 3 большие ветви: линейное внимание; линейные RNN, вроде и, конечно, модели на основе пространства состояний (SSM).
Разреженное моделирование последовательностей основано на простом принципе: не каждый токен должен общаться с каждым. Здесь выделяются статические подходы (как в Longformer), где паттерны внимания заданы заранее, и динамические, где они определяются на лету в зависимости от контента.
Методика, которая уже стала мейнстримом. В МоЕ разреженность применяется не в механизме внимания, а в FFN-слоях, где для каждого токена активируется лишь небольшая часть экспертов, что позволяет наращивать число параметров без пропорционального роста вычислений.
В нем речь идет не об изменении асимптотической сложности, а об ее аппаратной оптимизации. Флагман - FlashAttention.
Есть детальный разбор, как за счет оптимизации обращений к памяти GPU удается кардинально ускорить вычисления, не прибегая к аппроксимациям. Сюда же относятся и групповые механизмы внимания: GQA и MQA.
Это, пожалуй, самый горячий тренд. Его идея в том, чтобы стратегически комбинировать быстрые слои с линейной сложностью и медленные, но мощные слои с полным вниманием.
В обзоре выделяют два типа гибридизации: межслойную, как в Jamba, где разные типы слоев чередуются, и внутрислойную, где в одном слое разные головы могут использовать разные механизмы внимания.
Это неавторегрессионные модели, которые генерируют текст, постепенно восстанавливая его из шума. Их главная фишка в параллельном декодировании, что дает ощутимое ускорение инференса.
В конце обзора есть анализ применения всех этих архитектур в разных модальностях - CV и аудио.
Так что, если хотите быстро разобраться в базовых методах, которые будут двигать дизайн LLM в ближайшее время,
@ai_machinelearning_big_data
#AI #ML #LLM #Architectures
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤12🔥6👍5
Технологии будущего уже здесь — они медленно перестраивают реальность вокруг нас. Уже сейчас можно сказать, что генеративный ИИ вышел за рамки экспериментов и начинает менять привычные бизнес-процессы. Но как именно это происходит? В интервью Коммерсанту Иван Гуз, управляющий партнер Авито, раскрыл детали интеграции искусственного интеллекта в повседневные операции компании и объяснил, почему без ИИ скоро нельзя будет представить ни один технологичный бизнес.
В Авито, например. GenAI уже берет на себя рутинные задачи: автоматически генерирует описания товаров, обрабатывает данные и оптимизирует процессы. «Уровень использования ИИ в качестве помощников растет экспоненциально. То есть сомнений в том, что все будут использовать искусственный интеллект, не возникает», — подчеркивает Иван Гуз. Следующий этап, по мнению эксперта, — переход к более сложным системам: «агентскому ИИ», способному принимать решения, и world models, которые работают с контекстом, а не просто с данными.
Подпишитесь на полезные каналы Авито
В Авито, например. GenAI уже берет на себя рутинные задачи: автоматически генерирует описания товаров, обрабатывает данные и оптимизирует процессы. «Уровень использования ИИ в качестве помощников растет экспоненциально. То есть сомнений в том, что все будут использовать искусственный интеллект, не возникает», — подчеркивает Иван Гуз. Следующий этап, по мнению эксперта, — переход к более сложным системам: «агентскому ИИ», способному принимать решения, и world models, которые работают с контекстом, а не просто с данными.
Подпишитесь на полезные каналы Авито
❤4👍3🔥3
🚀 500+ AI Agents Projects — крупнейшая подборка реальных проектов с ИИ-агентами
Ashish Patel собрал коллекцию из 500+ проектов, где используются AI-агенты в самых разных сферах — от медицины до финансов и customer support.
🧠 Что внутри:
— Кейсы с открытым кодом: торговые боты, ассистенты, рекомендательные системы
— Поддержка популярных фреймворков: CrewAI, AutoGen, LangGraph и др.
— Агентные решения для анализа рынка, генерации резюме, видеопомощников, юристов и даже врачей
— Образовательные агенты, рекрутинговые, customer service и legal-tech проекты
— Указаны ссылки на репозитории, описание задач и идеи для расширения
📌 Почему это полезно:
✔️ Отличный старт для своего проекта
✔️ Удобно искать по индустрии и технологии
✔️ Много вдохновения для хакатонов, ресёрча и автоматизации
✔️ Поддержка сообщества: можно добавить свои кейсы
📌 Github
@data_analysis_ml
Ashish Patel собрал коллекцию из 500+ проектов, где используются AI-агенты в самых разных сферах — от медицины до финансов и customer support.
🧠 Что внутри:
— Кейсы с открытым кодом: торговые боты, ассистенты, рекомендательные системы
— Поддержка популярных фреймворков: CrewAI, AutoGen, LangGraph и др.
— Агентные решения для анализа рынка, генерации резюме, видеопомощников, юристов и даже врачей
— Образовательные агенты, рекрутинговые, customer service и legal-tech проекты
— Указаны ссылки на репозитории, описание задач и идеи для расширения
📌 Почему это полезно:
✔️ Отличный старт для своего проекта
✔️ Удобно искать по индустрии и технологии
✔️ Много вдохновения для хакатонов, ресёрча и автоматизации
✔️ Поддержка сообщества: можно добавить свои кейсы
📌 Github
@data_analysis_ml
🔥10❤8👍4
🤖 Claude Code только что заставил разработчика плакать — модель взяла и удалила все PDF, чаты и пользовательские данные из базы 🥲
Всё идёт идеально, пока ИИ не решит «подчистить хвосты»… и вместе с ними базу данных.
LMAO 💀
Это ещё раз напоминает:
- ИИ в проде должен быть всегда под присмотром
- Бэкапы и тестовые окружения — без них никуда
- Автономный агент без ограничений = билет в one-way trip
Всё идёт идеально, пока ИИ не решит «подчистить хвосты»… и вместе с ними базу данных.
LMAO 💀
Это ещё раз напоминает:
- ИИ в проде должен быть всегда под присмотром
- Бэкапы и тестовые окружения — без них никуда
- Автономный агент без ограничений = билет в one-way trip
🤣31👍11❤7🔥4😱3😢1💔1
🔥 Гугл успел проиндексировать больше 370 000 чатов Grok
В поисковой выдаче теперь спокойно всплывают диалоги, где встречаются:
- 🧪 рецепты запрещённых веществ
- 🔑 персональные данные и API-ключи
- 🕵️ даже обсуждение убийства Маска
Причина проста — при нажатии на кнопку «поделиться» такие чаты автоматически становятся открытыми для индексации, без каких-либо предупреждений.
Интересно, что пару недель назад OpenAI уже попали под огонь за похожую историю: у них хотя бы была отдельная кнопка и дисклеймер, но проблему быстро прикрыли и подчистили.
А Маск тогда язвительно заявлял , что у Grok подобного не бывает. Допрыгался👍
📌 Подробности
@data_analysis_ml
В поисковой выдаче теперь спокойно всплывают диалоги, где встречаются:
- 🧪 рецепты запрещённых веществ
- 🔑 персональные данные и API-ключи
- 🕵️ даже обсуждение убийства Маска
Причина проста — при нажатии на кнопку «поделиться» такие чаты автоматически становятся открытыми для индексации, без каких-либо предупреждений.
Интересно, что пару недель назад OpenAI уже попали под огонь за похожую историю: у них хотя бы была отдельная кнопка и дисклеймер, но проблему быстро прикрыли и подчистили.
А Маск тогда язвительно заявлял , что у Grok подобного не бывает. Допрыгался
📌 Подробности
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
😁17❤3👍2🔥2👏1
🧮 GPT-5 Pro выходит на новый уровень.
Теперь модель способна выводить корректные математические доказательства прямо из научных статей.
📌 Недавний пример: GPT-5 Pro построила проверенное доказательство из работы по выпуклой оптимизации, расширив «безопасное окно шага» на 50%.
🧮 Эксперимент выглядел так: балы взята статья по выпуклой оптимизации, где оставался открытым вопрос о шагах градиентного спуска.
GPT-5 Pro предложил доказательство, которое улучшило решение из оригинальной работы, и автор эксперимента лично проверил его корректность.
📄 В первой версии статьи было установлено:
🟢 если η < 1/L (L — параметр гладкости), кривая значений функции выпуклая;
🟢 если η > 1.75/L, существует контрпример.
Неясным оставался диапазон [1/L, 1.75/L].
💡 GPT-5 Pro сумел продвинуться и показал, что условие выпуклости сохраняется вплоть до η = 1.5/L. Это не окончательное решение, но значимый шаг вперёд — фактически новый научный результат, который мог бы быть опубликован на arXiv.
👀 Однако в обновлённой версии статьи , где появился дополнительный соавтор, люди закрыли задачу полностью, доказав точность границы 1.75/L.
Примечательно, что доказательство GPT-5 Pro оказалось независимым: оно не совпадает с версией v2 и выглядит как естественное развитие идей из v1. Это показывает, что модель действительно смогла предложить свой собственный путь к решению открытой математической проблемы.
Главное не только в результате, но и в контроле: на второй попытке, при заданных ограничениях, модель сместила константу дальше — сохранив все правила.
Можно представить так: GPT-5 крутит очень чувствительную ручку, но не ломает механизм — а параллельно пишет чистое и проверяемое объяснение, которое может разобрать эксперт.
Это шаг к тому, чтобы ИИ стал ежедневным соавтором на самых острых технических границах — где модели быстро «поджимают» константы, а люди доводят их до предела.
Эра, когда большая часть математических открытий будет рождаться вместе с ИИ, только начинается. 🚀
Пост полностью.
@data_analysis_ml
Теперь модель способна выводить корректные математические доказательства прямо из научных статей.
📌 Недавний пример: GPT-5 Pro построила проверенное доказательство из работы по выпуклой оптимизации, расширив «безопасное окно шага» на 50%.
🧮 Эксперимент выглядел так: балы взята статья по выпуклой оптимизации, где оставался открытым вопрос о шагах градиентного спуска.
GPT-5 Pro предложил доказательство, которое улучшило решение из оригинальной работы, и автор эксперимента лично проверил его корректность.
📄 В первой версии статьи было установлено:
Неясным оставался диапазон [1/L, 1.75/L].
💡 GPT-5 Pro сумел продвинуться и показал, что условие выпуклости сохраняется вплоть до η = 1.5/L. Это не окончательное решение, но значимый шаг вперёд — фактически новый научный результат, который мог бы быть опубликован на arXiv.
👀 Однако в обновлённой версии статьи , где появился дополнительный соавтор, люди закрыли задачу полностью, доказав точность границы 1.75/L.
Примечательно, что доказательство GPT-5 Pro оказалось независимым: оно не совпадает с версией v2 и выглядит как естественное развитие идей из v1. Это показывает, что модель действительно смогла предложить свой собственный путь к решению открытой математической проблемы.
Главное не только в результате, но и в контроле: на второй попытке, при заданных ограничениях, модель сместила константу дальше — сохранив все правила.
Можно представить так: GPT-5 крутит очень чувствительную ручку, но не ломает механизм — а параллельно пишет чистое и проверяемое объяснение, которое может разобрать эксперт.
Это шаг к тому, чтобы ИИ стал ежедневным соавтором на самых острых технических границах — где модели быстро «поджимают» константы, а люди доводят их до предела.
Эра, когда большая часть математических открытий будет рождаться вместе с ИИ, только начинается. 🚀
Пост полностью.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍4🔥3🤯1