📘 Machine Learning Q and AI — новая книга от мастодонта ML Себастьяна Рашки теперь в открытом доступе!
👨🔬 Автор — core‑разработчик Scikit‑learn, преподаватель, автор культовых пособий по машинному обучению.
Что внутри:
• 30 глав по нейросетям, компьютерному зрению, LLM, оценке и деплою моделей
• Чёткая структура: теория → примеры → упражнения
• Много практики, схем, визуализаций и Python‑кода
Это не просто справочник, а полный курс по Deep Learning, от основ до продвинутых тем.
📖 Читать онлайн
@data_analysis_ml
👨🔬 Автор — core‑разработчик Scikit‑learn, преподаватель, автор культовых пособий по машинному обучению.
Что внутри:
• 30 глав по нейросетям, компьютерному зрению, LLM, оценке и деплою моделей
• Чёткая структура: теория → примеры → упражнения
• Много практики, схем, визуализаций и Python‑кода
Это не просто справочник, а полный курс по Deep Learning, от основ до продвинутых тем.
📖 Читать онлайн
@data_analysis_ml
👍15❤9🔥4
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Qwen обновила свой синтезатор речи Qwen-TTS, его обучали на миллионах часов аудиозаписей. Новая версия адаптирует интонацию, ритм и эмоции под контекст текста и приближает звучание к человеческому. Добавили 3 китайских диалекта и поддержку 7 двуязычных голосов (Cherry, Ethan, Jada и др.).
Тесты в SeedTTS-Eval показали высокую точность (WER 1.209) и естественность (SIM 1.967). Модель доступна только через API. В будущем обещают новые языки и стили речи.
qwenlm.github.io
Совместное исследование ERGO Innovation Lab и ECODYNAMICS показало, что ИИ-системы не просто выдают популярные ссылки, они анализируют структуру, читаемость и ясность контента. Это ставит под сомнение традиционные методы SEO в для традиционных сайтов.
Аналитики изучили 33 тыс. запросов и 600 сайтов из области услуг страхования. Результат: LLM оценивают не только ключевые слова, но и логичность подачи информации, удобство навигации и глубину раскрытия темы.
Специалисты советуют пересмотреть стратегии: упростить тексты, структурировать данные и адаптировать контент под агентные системы. Чем раньше компании пересмотрят свои SEO-стратегии, тем выше вероятность оставаться на виду, когда алгоритмы станут сложнее. Полную версию отчета можно почитать по ссылке.
ergo.com
Конкуренция за лучших специалистов в сфере ИИ достигла критической точки. После того как компания Цукерберга переманила 4 ключевых сотрудников OpenAI для работы над «суперинтеллектом», глава исследований Марк Чэн призвал команду Сэма Альтмана оставаться верной компании, пообещав пересмотреть зарплаты и улучшить условия.
По данным источников, Цукерберг предлагает бонусы до $100 млн и лично контактирует с потенциальными кандидатами. Внутри OpenAI сотрудники жалуются на перегрузки, многие работают по 80 часов в неделю. В ответ на агрессивный хэдхантинг, Open AI объявила о «перезагрузке» на неделю, при этом напомнив, что из главная цель - развитие ИИ, а не соревнование с конкурентами.
wired.com
Microsoft разработала ИИ-инструмент MAI-DxO, который в 4 раза эффективнее опытных врачей в решении сложных диагностических задач. Система использует «оркестратор», создавая сеть из 5 ИИ-агентов, выполняющих роли от генератора гипотез до выбора тестов, которые взаимодействуют и «спорят» для принятия решений.
Тестирование на 304 сложных клинических случаях из NEJM показало точность 85,5% при использовании OpenAI o3 — против 20% у людей без доступа к справочникам или коллегам. Технология может быть интегрирована в Copilot и Bing, которые суммарно обрабатывают около 50 млн. медицинских запросов ежедневно.
ft.com
В минувшую субботу, в Пекине прошел первый в Китае турнир по футболу полностью автономных роботов-гуманоидов. Команда университета Циньхуа победила в финале, обыграв соперников из сельскохозяйственного университета со счетом 5:3. Обе команды использовали одинаковое оборудование от Booster Robotics, но разрабатывали собственные алгоритмы для управления зрением, балансом и движениями.
Матч стал испытанием для технологий: роботы падали, теряли равновесие, а иногда их приходилось уносить на носилках - все это помогает тестировать системы управления и безопасности перед массовым внедрением. Организаторы назвали матч "трейлером" предстоящих Всемирных игр роботов в августе, где будут представлены 11 видов спорта.
bloomberg.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8🔥4👍3
Apple активно изучает возможность использования моделей Claude 3 Opus от Anthropic и GPT-4 Turbo от OpenAI для новой версии Siri, отказавшись от собственных LLM. Компания провела тестирование обеих моделей на закрытой облачной инфраструктуре, чтобы сравнить качество генерации, безопасность и способность к сложным диалогам.
Причины перехода:
— Собственная разработка LLM для Siri задерживается до 2026 года из-за проблем с качеством
— Необходимость ускорить вывод на рынок более интеллектуального голосового ассистента
— Усиленная конкуренция с Google Assistant и Microsoft Copilot
Что уже сделано:
— Тестирование Claude 3 Opus и GPT-4 Turbo на Private Cloud Compute Apple
— Смена руководства AI-подразделения: Майк Рокуэлл занял место Джона Джаннандреа
— Отмена запуска “LLM Siri” на WWDC 2025 из-за неготовности модели
📌 Подробнее
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14❤8🔥4😁3👏1
Apple выложила Sage Mixtral 8x7B fine-tune с лицензией Apache
💡 Это не просто ещё одна доработка LLM — модель использует State-Action Chains (SAC), чтобы встроить в диалоговую генерацию латентные переменные для эмоций и стратегий общения.
Что это даёт:
- SAC vs обычный fine-tune: модель получает грубое управление через state/action токены → диалоги становятся эмоционально насыщеннее, без потери на метриках
- Итеративная доработка: self-play + tree search позволяют оптимизировать диалоги по цепочкам действий, превзойдя базовые модели по оценкам LLM-судей
🔗 https://huggingface.co/apple/sage-ft-mixtral-8x7b
#apple #opensource
💡 Это не просто ещё одна доработка LLM — модель использует State-Action Chains (SAC), чтобы встроить в диалоговую генерацию латентные переменные для эмоций и стратегий общения.
Что это даёт:
- SAC vs обычный fine-tune: модель получает грубое управление через state/action токены → диалоги становятся эмоционально насыщеннее, без потери на метриках
- Итеративная доработка: self-play + tree search позволяют оптимизировать диалоги по цепочкам действий, превзойдя базовые модели по оценкам LLM-судей
🔗 https://huggingface.co/apple/sage-ft-mixtral-8x7b
#apple #opensource
❤12🔥6👍5👌1
miniDiffusion — упрощённая реализация Stable Diffusion 3.5 на PyTorch
🔹 Этот репозиторий — минималистичный, но рабочий аналог Stable Diffusion:
всего ~2800 строк кода, без лишних зависимостей.
📦 Что внутри:
• Архитектура DiT (Diffusion Transformer)
• Кодировщики: T5 (текст) и CLIP
• VAE для генерации изображений
• Attention, Noise Scheduler и FID-оценка качества
🧪 Зачем это нужно:
• Понять, как работает диффузионная генерация
• Экспериментировать с архитектурой
• Обучать и тестировать свои модели
▶️ Быстрый старт:
📌 Github
🔹 Этот репозиторий — минималистичный, но рабочий аналог Stable Diffusion:
всего ~2800 строк кода, без лишних зависимостей.
📦 Что внутри:
• Архитектура DiT (Diffusion Transformer)
• Кодировщики: T5 (текст) и CLIP
• VAE для генерации изображений
• Attention, Noise Scheduler и FID-оценка качества
🧪 Зачем это нужно:
• Понять, как работает диффузионная генерация
• Экспериментировать с архитектурой
• Обучать и тестировать свои модели
▶️ Быстрый старт:
git clone https://github.com/yousef-rafat/miniDiffusion
pip install -r requirements.txt
python3 encoders/get_checkpoints.py
📌 Github
❤9👍3🔥3
🧠 Хочешь понять, на чём основана модель Gemma 3n от Google?
Вот ключевые научные работы, стоящие за её архитектурой и обучением:
🔹 AltUp — улучшение аппроксимации внимания
https://arxiv.org/abs/2301.13310
🔹 LAuReL — расширение языковых моделей за счёт многоязычного претрейнинга
https://arxiv.org/abs/2411.07501
🔹 MatFormer — матричная факторизация для масштабируемых LLM
https://arxiv.org/abs/2310.07707
🔹 Activation Sparsity — обучение моделей с разреженной активацией
https://arxiv.org/abs/2506.06644
🔹 Universal Speech Model — единая модель для понимания и генерации речи
https://arxiv.org/abs/2303.01037
📘 Блог Google с обзором архитектуры и практическим гайдом по Gemma 3n:
https://developers.googleblog.com/en/introducing-gemma-3n-developer-guide/
Вот ключевые научные работы, стоящие за её архитектурой и обучением:
🔹 AltUp — улучшение аппроксимации внимания
https://arxiv.org/abs/2301.13310
🔹 LAuReL — расширение языковых моделей за счёт многоязычного претрейнинга
https://arxiv.org/abs/2411.07501
🔹 MatFormer — матричная факторизация для масштабируемых LLM
https://arxiv.org/abs/2310.07707
🔹 Activation Sparsity — обучение моделей с разреженной активацией
https://arxiv.org/abs/2506.06644
🔹 Universal Speech Model — единая модель для понимания и генерации речи
https://arxiv.org/abs/2303.01037
📘 Блог Google с обзором архитектуры и практическим гайдом по Gemma 3n:
https://developers.googleblog.com/en/introducing-gemma-3n-developer-guide/
❤5🔥3👍2
🧠 WM-Abench — бенчмарк для оценки памяти у мультимодальных LLM
Новый open-source бенчмарк от Maitrix Research оценивает, как мультимодальные модели (текст + изображение) запоминают и используют визуальную информацию.
📌 Что проверяется:
– Могут ли LLM “удерживать в голове” объекты, числа и расположение
– Насколько глубоко модель понимает визуальный контекст
– Способна ли она логически оперировать на основе того, что “видела”
📈 Поддерживаются: GPT‑4o, Gemini, Claude, LLaVA и другие
🔍 Задания: от простых “где лежит мяч?” до сложных визуальных рассуждений
Исследователи из Maitrix оценили 15 SOTA мультимодальных моделей (включая o3 и Gemini 2.5 Pro) по 23 когнитивным измерениям: от базового восприятия до предсказания будущих состояний.
Ключевые выводы:
🔹 Модели хорошо справляются с распознаванием, но проваливаются в 3D-пространственном мышлении, динамике движения и причинно-следственной симуляции.
🔹 VLM склонны “путать” физику: даже изменение цвета объекта сбивает модель на задачах восприятия.
🔹 В сложных задачах предсказания следующего состояния — даже лучшие модели отстают от человека на 34.3%.
🔹 Точность восприятия ≠ понимание: даже “увидев” всё правильно, модели не умеют достроить последствия и взаимодействия объектов.
Отличный инструмент, чтобы понять на что реально способна ваша мультимодальная модель, а не только на красивые демо.
🔗 https://wm-abench.maitrix.org
#LLM #AI #multimodal #benchmark
Новый open-source бенчмарк от Maitrix Research оценивает, как мультимодальные модели (текст + изображение) запоминают и используют визуальную информацию.
📌 Что проверяется:
– Могут ли LLM “удерживать в голове” объекты, числа и расположение
– Насколько глубоко модель понимает визуальный контекст
– Способна ли она логически оперировать на основе того, что “видела”
📈 Поддерживаются: GPT‑4o, Gemini, Claude, LLaVA и другие
🔍 Задания: от простых “где лежит мяч?” до сложных визуальных рассуждений
Исследователи из Maitrix оценили 15 SOTA мультимодальных моделей (включая o3 и Gemini 2.5 Pro) по 23 когнитивным измерениям: от базового восприятия до предсказания будущих состояний.
Ключевые выводы:
🔹 Модели хорошо справляются с распознаванием, но проваливаются в 3D-пространственном мышлении, динамике движения и причинно-следственной симуляции.
🔹 VLM склонны “путать” физику: даже изменение цвета объекта сбивает модель на задачах восприятия.
🔹 В сложных задачах предсказания следующего состояния — даже лучшие модели отстают от человека на 34.3%.
🔹 Точность восприятия ≠ понимание: даже “увидев” всё правильно, модели не умеют достроить последствия и взаимодействия объектов.
Отличный инструмент, чтобы понять на что реально способна ваша мультимодальная модель, а не только на красивые демо.
🔗 https://wm-abench.maitrix.org
#LLM #AI #multimodal #benchmark
❤10👍3🔥3
🧠 II-Medical-8B-1706 — open-source LLM для медицинских задач!
▪️ Превзошла MedGemma 27B от Google при 70% меньшем количестве параметров
▪️ Квантизированные веса GGUF — модель запускается даже на <8 ГБ ОЗУ
Model card: https://huggingface.co/Intelligent-Internet/II-Medical-8B-1706
GGUF quantization: https://huggingface.co/Intelligent-Internet/II-Medical-8B-1706-GGUF
▪️ Превзошла MedGemma 27B от Google при 70% меньшем количестве параметров
▪️ Квантизированные веса GGUF — модель запускается даже на <8 ГБ ОЗУ
Model card: https://huggingface.co/Intelligent-Internet/II-Medical-8B-1706
GGUF quantization: https://huggingface.co/Intelligent-Internet/II-Medical-8B-1706-GGUF
❤10👍5🔥2
Microsoft уволит 9 000 сотрудников — это примерно 4% от общего числа работников компании.
Очевидно, что ИИ действительно делает людей ненужными. И это уже не просто громкие заявления.
@data_analysis_ml
Очевидно, что ИИ действительно делает людей ненужными. И это уже не просто громкие заявления.
@data_analysis_ml
🔥16🥱9🤣6❤5👍3🤔2
🧠 Теперь можно вычислять LLM, которые «накрутили» баллы на бенчмарказ по математике, но не умеют больше ничего.
В свежем исследовании *“Does Math Reasoning Improve General LLM Capabilities?”* показано, что модели, обученные на математике с помощью SFT, часто не улучшаются вне математики — а иногда даже деградируют.
📊 Что выяснили:
• SFT на математике → ухудшение на нематематических задачах
• RL на математике → перенос улучшений в другие домены
• SFT вызывает сильное смещение представлений и токен-дистрибуций
• RL наоборот — сохраняет топологию модели и двигает только логические оси
🧪 Авторами разработан новый инструмент — Transferability Index:
Это простое соотношение между улучшением на математике и изменением на сбалансированном наборе задач. Помогает понять:
✔️ где модель реально умнее
❌ а где — просто бенчмарк‑максинг
📌 Вывод: RL-постобучение лучше предотвращает «забвение» и делает LLM более универсальными.
SFT — может казаться эффективным, но часто ухудшает общие способности модели.
📌 Подробнее
В свежем исследовании *“Does Math Reasoning Improve General LLM Capabilities?”* показано, что модели, обученные на математике с помощью SFT, часто не улучшаются вне математики — а иногда даже деградируют.
📊 Что выяснили:
• SFT на математике → ухудшение на нематематических задачах
• RL на математике → перенос улучшений в другие домены
• SFT вызывает сильное смещение представлений и токен-дистрибуций
• RL наоборот — сохраняет топологию модели и двигает только логические оси
🧪 Авторами разработан новый инструмент — Transferability Index:
Это простое соотношение между улучшением на математике и изменением на сбалансированном наборе задач. Помогает понять:
✔️ где модель реально умнее
❌ а где — просто бенчмарк‑максинг
📌 Вывод: RL-постобучение лучше предотвращает «забвение» и делает LLM более универсальными.
SFT — может казаться эффективным, но часто ухудшает общие способности модели.
📌 Подробнее
❤14👍10🔥5
🚀 OpenAI заказала у Oracle колоссальные мощности для ИИ — 4.5 гигаватта
Это крупнейший в истории контракт на вычисления для искусственного интеллекта. Проект Stargate и теперь это самый масштабный заказ на AI-инфраструктуру в мире.
💰 Контракт включён в большое соглашение Oracle на $30 миллиардов в год, которое начнёт действовать со следующего фискального года.
🔧 Чтобы всё это обеспечить, Oracle:
- Расширит дата-центр в Техасе (Абилин) с 1.2 до 2 гигаватт
- Построит новые кампусы в Техасе, Мичигане, Висконсине и Вайоминге
Источник: bloomberg.com
@data_analysis_ml
Это крупнейший в истории контракт на вычисления для искусственного интеллекта. Проект Stargate и теперь это самый масштабный заказ на AI-инфраструктуру в мире.
💰 Контракт включён в большое соглашение Oracle на $30 миллиардов в год, которое начнёт действовать со следующего фискального года.
🔧 Чтобы всё это обеспечить, Oracle:
- Расширит дата-центр в Техасе (Абилин) с 1.2 до 2 гигаватт
- Построит новые кампусы в Техасе, Мичигане, Висконсине и Вайоминге
Источник: bloomberg.com
@data_analysis_ml
❤10🔥6👍4🤯2
🧭 PyCuVSLAM — быстрый и точный SLAM от NVIDIA с Python‑интерфейсом
Что такое SLAM:
SLAM (Simultaneous Localization and Mapping) — это технология, которая позволяет устройству одновременно строить карту окружающей среды и определять своё местоположение внутри неё.
Применяется в роботах, дронах, AR/VR и автономных транспортных средствах.
Что такое PyCuVSLAM:
PyCuVSLAM — это Python-обёртка над cuVSLAM, высокопроизводительным SLAM-движком от NVIDIA. Он использует CUDA-ускорение и позволяет системам в реальном времени отслеживать движение и строить карту окружающего мира.
🔧 Основные возможности:
• Аппаратное ускорение на NVIDIA GPU (включая Jetson)
• Поддержка от 1 до 32 камер + опциональный IMU
• Можно подключать обычные RGB-камеры, камеры глубины и сенсоры движения
• Работает в конфигурациях от простой однокамерной до мультисенсорных систем
• Удобный Python API — быстро подключается и настраивается
💻 Установка:
• Поддерживает Ubuntu 22.04+, Python 3.10, CUDA 12.6
• Устанавливается через pip, Docker или запускается на Jetson
• Есть готовые примеры для быстрой работы
🧠 Для кого:
• Разработчики роботов, дронов, AR/VR
• Те, кому нужен точный и быстрый SLAM без глубокой настройки
📌 GitHub
Что такое SLAM:
SLAM (Simultaneous Localization and Mapping) — это технология, которая позволяет устройству одновременно строить карту окружающей среды и определять своё местоположение внутри неё.
Применяется в роботах, дронах, AR/VR и автономных транспортных средствах.
Что такое PyCuVSLAM:
PyCuVSLAM — это Python-обёртка над cuVSLAM, высокопроизводительным SLAM-движком от NVIDIA. Он использует CUDA-ускорение и позволяет системам в реальном времени отслеживать движение и строить карту окружающего мира.
🔧 Основные возможности:
• Аппаратное ускорение на NVIDIA GPU (включая Jetson)
• Поддержка от 1 до 32 камер + опциональный IMU
• Можно подключать обычные RGB-камеры, камеры глубины и сенсоры движения
• Работает в конфигурациях от простой однокамерной до мультисенсорных систем
• Удобный Python API — быстро подключается и настраивается
💻 Установка:
• Поддерживает Ubuntu 22.04+, Python 3.10, CUDA 12.6
• Устанавливается через pip, Docker или запускается на Jetson
• Есть готовые примеры для быстрой работы
🧠 Для кого:
• Разработчики роботов, дронов, AR/VR
• Те, кому нужен точный и быстрый SLAM без глубокой настройки
📌 GitHub
❤11🔥5👍1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Veo 3 Fast - это ускоренная версия модели для создания видео из текста. Она обрабатывает запросы более чем в два раза быстрее Veo 3, но с ограничением по качеству: максимум 720p.
Сервис доступен в 159 странах, включая все страны Европы. Пользователи Gemini Pro получают три генерации в день, а подписчики Ultra — до 125 видео в месяц. Дополнительно, снизили частоту отклонения пользовательских промптов.
Google уже готовит добавление функции Image-to-video, она находится «на финальной стадии».
Josh Woodward (VP Google) в сети X
Ученые из Helmholtz Munich создали модель Centaur, способную предсказывать решения людей в любых психологических задачах, от выбора риска до обучения. Команда адаптировала Llama 3.1, обучив ее на данных из 10 млн. решений. По тестам Centaur превзошел специализированные алгоритмы, которые разрабатывали годами. Модель угадывает поведение даже в новых сценариях при изменении контекста задачи или добавления новых опций.
Внутренние процессы Centaur начали напоминать активность человеческого мозга без прямого обучения на нейронных данных. Цифровой «мозг» даже открыл новую стратегию принятия решений.
Исследователи открыли доступ к модели и датасету Psych-101, обещая прорыв в психологии, образовании и дизайне продуктов.
nature.com
Компания разрабатывает функцию для чат-ботов в своем AI Studio: они смогут инициировать диалог с пользователями, если те ранее активно общались с ботом (не менее 5 сообщений за 2 недели). После первого ответного сообщения от пользователя боты продолжат общение, но только в течение 14 дней, и прекратят попытки, если ответа не последует.
Цель функции - удерживать аудиторию, увеличивая вовлеченность, это напрямую связано со стратегией монетизации ИИ-продуктов (прогнозируемый доход $2–3 млрд. в 2025 году). Пилотный тест уже запущен, но детали реализации остаются расплывчатыми.
businessinsider.com
Более 45 технологических и промышленных гигантов призвали Еврокомиссию перенести сроки вступления в силу закона об искусственном интеллекте на два года. Они утверждают, что текущие требования к мощным ИИ-моделям слишком расплывчаты и угрожают развитию инноваций.
Регулирование должно начаться в августе, инициативу отрытого обращения к ЕК запустили General Catalyst, SAP и Spotify, хотя последние двое не подписали письмо.
bloomberg.com
Облачный провайдер CoreWeave первым установил серверы Nvidia GB300 NVL72 с новыми GPU Blackwell Ultra. Платформа, собранная Dell, объединяет 72 видеокарты и 36 процессоров Grace, обеспечивает 50-кратный роста производительности при инференсе и 5-кратную энергоэффективность по сравнению с архитектурой Hopper. Инсталляция ориентирована на тяжелые нейросетевые задачи и агентные вычисления.
Система уже доступна клиентам, раннее внедрение может стать козырем провайдера в конкуренции за внимание технической аудитории.
cnbc.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7🔥3👍2
🚀 Вышла новая модель DeepSeek-TNG R1T2 Chimera 671B
Особенности:
- примерно на 20% быстрее обычного R1 и более чем в 2 раза быстрее R1-0528
- значительно умнее стандартного R1 по бенчмаркам GPQA и AIME-24
- намного умнее и обеспечивает согласованность think-token по сравнению с первым R1T Chimera 0426
R1T2 получает веса из R1-0528, R1 и V3-0324 с помощью Assembly-of-Experts. Слияние сохраняет способность рассуждать R1-0528 и использует лёгкие общие слои V3-0324, так что ответы остаются точными и ёмкими.
Модель распространяется под лицензией MIT на huggingface
https://huggingface.co/tngtech/DeepSeek-TNG-R1T2-Chimera
@data_analysis_ml
Особенности:
- примерно на 20% быстрее обычного R1 и более чем в 2 раза быстрее R1-0528
- значительно умнее стандартного R1 по бенчмаркам GPQA и AIME-24
- намного умнее и обеспечивает согласованность think-token по сравнению с первым R1T Chimera 0426
R1T2 получает веса из R1-0528, R1 и V3-0324 с помощью Assembly-of-Experts. Слияние сохраняет способность рассуждать R1-0528 и использует лёгкие общие слои V3-0324, так что ответы остаются точными и ёмкими.
Модель распространяется под лицензией MIT на huggingface
https://huggingface.co/tngtech/DeepSeek-TNG-R1T2-Chimera
@data_analysis_ml
❤12👍8🔥5