Анализ данных (Data analysis)
45.2K subscribers
2.11K photos
232 videos
1 file
1.9K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 NVIDIA представила гигантский синтетический датасет для беспилотных автомобилей!

🔥 Что внутри?
81,802 синтетических видео с разнообразными сценариями:
— Городские/шоссейные дороги
— Экстремальные погодные условия (дождь, снег, туман)
— Редкие ситуации (аварии, нестандартные ПДД)

Мультисенсорные данные:
— Камеры, лидары, радары
— Разметка объектов (пешеходы, машины, знаки)

Dataset: https://huggingface.co/datasets/nvidia/PhysicalAI-Autonomous-Vehicle-Cosmos-Drive-Dreams
Project Page: https://research.nvidia.com/labs/toronto-ai/cosmos_drive_dreams/

@data_analysis_ml
🧠 16 июня все самое важное в мире технологий ищите в Санкт-Петербурге!

В ТехноХабе Сбера состоится большая сессия в рамках серии мероприятий международной конференции AI Journey.

Именно здесь соберутся лидеры AI-индустрии из разных стран, чтобы обсудить реальные кейсы внедрения AI, архитектуры нового поколения, крутой апгрейд нейронки GigaChat, самое свежее в исследованиях GenAI и то, что уже завтра станет новым стандартом!

📌 Подключайтесь к трансляции, чтобы не отставать от будущего.
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
🔥 Manus Chat Mode — бесплатно и без ограничений для всех.

💬 Работает супер быстро прямо в чате.

🚀 Так же доступен Agent Mode с расширенными возможностями.

От простых вопросов до сложных задач — всё в одном окне : https://manus.im/

@ai_machinelearning_big_data

#news #ai #ml #manus
🎉 cuOpt от NVIDIA стал open source!

Теперь можно легко ускорять задачи оптимизации —
🔸 линейное программирование (LP)
🔸 целочисленные задачи (MIP)
🔸 маршрутизацию транспорта (VRP)
— с помощью GPU, почти не меняя код.

💡 Работает с Python, REST API и CLI
💡 Поддерживает PuLP и AMPL
💡 Запускается локально или в облаке
💡 Настраивается за пару минут

pip install --extra-index-url=https://pypi.nvidia.com cuopt-server-cu12==25.5.* cuopt-sh==25.5.*

📈 Результат — решения почти в реальном времени, даже для сложных задач.

👉 Попробуй
This media is not supported in your browser
VIEW IN TELEGRAM
🧠 Text-to-LoRA — адаптеры LoRA по описанию задачи на естественном языке

Text-to-LoRA (T2L) — это гиперсеть, которая генерирует адаптер LoRA для LLM,
исходя только из текстового описания задачи. Без данных. Без обучения. Просто промпт → LoRA.

💡 Как работает:
▪️ Метаобученная гиперсеть принимает описание задачи
▪️ Генерирует task-specific LoRA в один шаг
▪️ Поддерживает сотни известных LoRA
▪️ Может обобщать на новые задачи

🚀 Почему это важно:
Традиционно адаптация LLM требует:
- большого датасета
- тонкой настройки
- вычислительных затрат

Text-to-LoRA делает то же самое в один шаг, просто по тексту. Это снижает технический порог и делает настройку доступной даже без ML-экспертизы.

🧬 Вдохновлено биологией:
Как зрение человека адаптируется к свету без обучения,
так и LLM может адаптироваться к задаче по описанию — через T2L.

📌 Новый шаг к адаптивным и доступным языковым системам.

📍 Представлено на #ICML2025

📄 Paper: https://arxiv.org/abs/2506.06105
💻 Code: https://github.com/SakanaAI/Text-to-Lora

@data_analysis_ml
🚀 DiffusionRenderer (Cosmos): Neural Inverse and Forward Rendering with Video Diffusion Models

Cosmos DiffusionRenderer — это современный фреймворк для нейросетевого de-lighting и re-lighting видео и изображений.

Новый релиз даёт качественный скачок по сравнению с предыдущей версией: ещё более чистое удаление и добавление освещения благодаря архитектуре NVIDIA Cosmos и улучшенному пайплайну обработки данных.

🔧 Минимальные требования:
• Python 3.10
• NVIDIA GPU с минимум 16 ГБ VRAM (рекомендуется ≥24 ГБ)
• NVIDIA драйверы и CUDA 12.0+
• Свободно ≥70 ГБ на диске

Проект протестирован на Ubuntu 20.04 и видеокартах NVIDIA A100/A5000.

https://github.com/nv-tlabs/cosmos1-diffusion-renderer

@data_analysis_ml
🔥 Успех в IT = скорость + знания + окружение

Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!

AI: t.me/ai_machinelearning_big_data
Python: t.me/python_job_interview
Linux: t.me/linuxacademiya
Собеседования DS: t.me/machinelearning_interview
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/machinelearning_ru
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat

💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy

Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
🔥 AMD возвращается — и бросает вызов NVIDIA

Конец эпохи дефицита GPU?

На конференции Advancing AI AMD представила новые чипы MI350 и анонсировала серию MI400.

💥 MI350X:
• В 35 раз выше производительность инференса, чем у MI300
• На 40% энергоэффективнее, чем NVIDIA Blackwell
• Новый сервер Helios — до 72 чипов на стойку (ответ NVL72 от NVIDIA)

💬 Сэм Альтман (OpenAI) подтвердил партнёрство и участие в проектировании MI450
🧠 Microsoft, Meta, Oracle, xAI — уже на борту

🔓 AMD делает ставку на открытые стандарты (в отличие от CUDA)
♻️ Цель — 20-кратный рост энергоэффективности дата-центров к 2030

⚙️ AMD впервые всерьёз конкурирует с NVIDIA
Ставки: цена, открытость и масштабируемость.

MI350X выглядит как серьёзный конкурент Blackwell, а поддержка MI450 со стороны Альтмана — это далеко не пустой жест.

Если AMD продолжит продвигать открытые стандарты и энергоэффективность, мы наконец-то можем увидеть борьбу за рынок с NVIDIA на рынке GPU.

@data_analysis_ml