Анализ данных (Data analysis)
46.3K subscribers
2.34K photos
277 videos
1 file
2.08K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
🚀 LTX-Video 13B — один из самых мощных open-source видеогенераторов.

Разработчики внедрили в модель мультимасштабный рендеринг.

Обычные генеративные модели видео рендерят всё изображение целиком, одним разрешением.
Когда в сцене много движущихся объектов или деталей, модель может "размазать" их, потерять чёткость или неправильно совместить фон и передний план.

📝 А мультимасштабный рендеринг — это параллельная отрисовка картинки на разных уровнях детализации:

один поток отвечает за фон (низкая детализация, большой масштаб),

другой — за объекты в центре, движущиеся элементы (высокая детализация, малый масштаб).

Потом всё объединяется в один кадр, как слои в Photoshop.

🎯 Зачем это нужно?

Фон остаётся стабильным, не "дергается"

Движущиеся объекты остаются чёткими и отдельными от фона

Картинка в целом не разваливается (нет смешивания движений, артефактов)

Такой подход помогает удерживать высокое качество картинки даже при сложном движении — например, если в кадре бежит персонаж на фоне движущегося города.

👉 По сути, это умное раздельное внимание к разным частям кадра, чтобы не терять детали ни в статике, ни в движении.

Что нового?

Модель 13 миллиардов параметров
Multiscale rendering → больше деталей, чётче текстуры
Лучше понимает движение и сцену
– Запускается локально на GPU
– Поддержка keyframes, движения камеры/персонажей, мультисценных секвенций

Запускается даже на RTX 4090.

#AI #videoAI #ltxvideo #deeplearning #generativeAI #opensource #videogeneration

Попробовать можно тутhttps://app.ltx.studio/ltx-video
Codehttps://github.com/Lightricks/LTX-Video
Weightshttps://huggingface.co/Lightricks/LTX-Video
👍95🔥2
🤖 best-of-robot-simulators: крупнейший рейтинг симуляторов для робототехники

Проект — это автоматизированная и регулярно обновляемая подборка лучших симуляторов для робототехники на GitHub. Это must-have для всех, кто работает с моделированием и тестированием роботов в виртуальной среде.

🧩 Что внутри:
● 120+ симуляторов в 10 категориях
● Более 300 000 звёзд в сумме
● Автоматическая сортировка по GitHub-метрикам: звёзды, форки, активность
● Обновляется каждую среду

📂 Категории симуляторов:
• Generic Robotics
• Aerial (дроны)
• Maritime (морская робототехника)
• Space
• Domain Specific
• Game engines
• AI-training
• Rendering
• Physics engines
• 2D Simulators

🔍 Примеры известных фреймворков:
• Gazebo, Webots, Isaac Sim, MuJoCo, AirSim, PyBullet

🛠 Полезно для:
• Разработчиков и исследователей
• Студентов робототехники
• Команд, выбирающих движок под проект
• Энтузиастов AI/симуляции

📎 Лицензия: CC-BY-SA 4.0

🌐 Репозиторий

#robotics #AI #simulation #opensource #gazebo #webots #isaacsim #mujoco
8🔥6👍3
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Теперь можно запускать модели Hugging Face прямо в Google Colab — бесплатно!

Больше не нужно настраивать окружение вручную. Просто заходишь на страницу модели — и нажимаешь "Open in Colab". Всё готово для запуска за секунды.

Отлично подходит для:
- Быстрого теста модели
- Прототипирования и экспериментов
- Обучения и демонстраций


💡 Бонус для разработчиков:

Добавь файл notebook.ipynb в свой репозиторий модели — и Hugging Face автоматически подхватит его.
Пользователи смогут запускать твой пример сразу, без копирования кода!

🔥 Работает с Google Colab — бесплатно, быстро, удобно.

#HuggingFace #Colab #ML #AI #OpenSource #DeepLearning

✔️ Подробнее

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥2910👍5
🧠 PyTorch Distributed Checkpointing теперь поддерживает HuggingFace safetensors

📦 Что произошло:
Платформа DCP (Distributed Checkpointing) в PyTorch теперь встраивает нативную поддержку формата safetensors от HuggingFace. Это важный шаг к полной совместимости с экосистемой HF, которая активно используется в инференсе и дообучении.

🔍 В чём была проблема:
• DCP раньше использовал свой собственный формат чекпоинтов
• Чтобы работать с HuggingFace, приходилось писать конвертеры
• Чекпоинты приходилось загружать локально, что усложняло пайплайны

🚀 Что изменилось:
• Теперь можно сохранять и загружать модели напрямую в safetensors
• Поддерживается любой `fsspec`-совместимый storage (S3, GCS, локалка и т.д.)
• Интеграция уже улучшила UX в torchtune, став первым пользователем новой фичи

🛠 Как использовать:
• Просто передай новый load planner и storage reader в load()
• И аналогично — save planner + writer для save()
• Всё остальное работает как раньше

📈 Что это даёт:
• Меньше костылей и меньше кода
• Единый формат чекпоинтов для HF и PyTorch
• Более гибкие и производительные пайплайны

#PyTorch #HuggingFace #safetensors #ML #checkpointing #opensource

https://pytorch.org/blog/huggingface-safetensors-support-in-pytorch-distributed-checkpointing

@data_analysis_ml
🔥104👍4
Apple выложила Sage Mixtral 8x7B fine-tune с лицензией Apache

💡 Это не просто ещё одна доработка LLM — модель использует State-Action Chains (SAC), чтобы встроить в диалоговую генерацию латентные переменные для эмоций и стратегий общения.

Что это даёт:
- SAC vs обычный fine-tune: модель получает грубое управление через state/action токены → диалоги становятся эмоционально насыщеннее, без потери на метриках
- Итеративная доработка: self-play + tree search позволяют оптимизировать диалоги по цепочкам действий, превзойдя базовые модели по оценкам LLM-судей

🔗 https://huggingface.co/apple/sage-ft-mixtral-8x7b

#apple #opensource
12🔥6👍5👌1
Forwarded from Machinelearning
🔥 Новые модели OpenAI нашли в релизе Transformers 4.55

GPT-OSS — долгожданysq опенсорс для продвинутого reasoning и агентных задач.

🧠 Представленно два варианта:
GPT-OSS-120B — 117B параметров, запускается на одной H100 (80GB)
GPT-OSS-20B — 21B параметров, работает на 16GB GPU (или даже локально!)

💡 Оба варианта — MoE-модели (Mixture of Experts) с 4-битной квантизацией (MXFP4), что обеспечивает быстрое и дешёвое инференс-время (активны только 3.6B и 5.1B параметров).

✔️ Особенности:
• Архитектура Token-choice MoE с SwiGLU
• Контекст до 128K токенов с RoPE
• Чередуются full-attn и sliding-window слои
• Модель хорошо работает с CoT (chain-of-thought)
• Поддержка instruction-following и tool-use
• Совместима с transformers, vLLM, llama.cpp, ollama
• Используется тот же токенизатор, что и в GPT-4o
• Открытая лицензия Apache 2.0 (есть небольшое policy-дополнение)

Младшая модель может запускаться даже на локальном железе — идеально для on-device и edge-сценариев.

📎 Пример кода инференса уже доступен — достаточно 16GB GPU с mxfp4!

🏴‍☠️Лицензирование: Apache 2.0

https://github.com/huggingface/transformers/releases/tag/v4.55.0

@ai_machinelearning_big_data


#openai #opensource #chatgpt
Please open Telegram to view this post
VIEW IN TELEGRAM
👍87🔥5
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Tencent выложила в открытый доступ Hunyuan-GameCraft — инструмент для генерации интерактивных игровых видео с высокой реалистичностью.

Что это значит:
• Из одной картинки сцены и команд пользователя (клавиатура, мышь) создаётся полноценное игровое видео от первого или третьего лица.
• Движения плавные и точные: можно контролировать скорость, угол поворота и строить сложные траектории, а не только примитивную анимацию.
• Среда тоже живая — облака, дождь, снег, вода и другие эффекты генерируются динамически.
• Картинка остаётся чёткой даже при резких перемещениях — сохраняется информация о сцене.
• Работает быстро и дёшево: за счёт оптимизаций и квантования 13B-модель тянет даже RTX 4090, без дорогого рендера и сложного 3D-моделирования.

Построен на базе HunyuanVideo.

🟠Project Page: https://hunyuan-gamecraft.github.io
🟠Code: https://github.com/Tencent-Hunyuan/Hunyuan-GameCraft-1.0
🟠Technical Report: https://arxiv.org/abs/2506.17201
🟠Hugging Face: https://huggingface.co/tencent/Hunyuan-GameCraft-1.0

@data_analysis_ml

#AI #GameDev #VideoGeneration #HunyuanVideo #OpenSource #Tencent #GamingAI
Please open Telegram to view this post
VIEW IN TELEGRAM
6🔥5👍3
🖥 MongoDB выпускает MCP Server — теперь любой может стать дата-инженером

MongoDB представили открытый MCP сервер, который позволяет AI-инструментам вроде Claude, Cursor и GitHub Copilot напрямую общаться с вашей MongoDB-базой.

Теперь даже без знаний запросов можно просто написать:
• «Покажи самых активных пользователей»
• «Создай нового пользователя с правами только на чтение»
• «Как устроена коллекция orders?»

⚙️ MCP Server поддерживает:
• MongoDB Atlas
• Community Edition
• Enterprise Advanced

📌 Главное — не нужен SQL, не нужно знать синтаксис. Достаточно обычного языка.

💡 Под капотом: AI превращает ваши фразы в рабочие Mongo-запросы.
Открытый исходный код. Готово к продакшену.

📌 GitHub

#MongoDB #AItools #OpenSource #MCP

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
12👍11🔥6
This media is not supported in your browser
VIEW IN TELEGRAM
🎥 Stand-In (BowenXue) — лёгкий и plug-and-play фреймворк для генерации видео с сохранением личности

📌 Что делает:
- Генерирует видео, сохраняя лицо или стиль персонажа, обучив всего ~1 % новых параметров на базе модели генерации видео. Результат сопоставим с полным переобучением, но быстрее и легче.
- Поддерживает генерацию по тексту с контролем идентичности, смену стиля, pose-guidance, face-swap, стилизацию и даже генерацию не-людей.
- Лицензия Apache-2.0 — открытое использование и модификация.

Что нового:
- Версия v1.0 (153 M параметров) с весами на базе Wan2.1-14B-T2V и кодом для инференса.
- Интеграция с ComfyUI: выпущен preprocessing-нод для улучшенной поддержки, особенно после сторонней интеграции.

https://huggingface.co/BowenXue/Stand-In

#opensource #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍6🔥3