👩💻 django-cors-headers (https://github.com/adamchainz/django-cors-headers) — Django-приложение для обработки заголовков Cross-Origin Resource Sharing (CORS)!
🌟 Этот инструмент позволяет вашему Django-приложению принимать запросы из браузеров, отправленные с других доменов. Это особенно полезно для API-серверов или приложений, которые обслуживают фронтенд и бэкенд с разных доменов или портов.
🌟 Инструмент позволяет гибко управлять настройками CORS, включая поддержку конкретных методов, заголовков и настроек безопасности. Например, вы можете настроить разрешение только для определённых доменов или включить временный доступ для локальной разработки. Однако важно понимать риски, связанные с CORS, поскольку неправильная конфигурация может открыть доступ к вашим данным для нежелательных источников.
🔐 Лицензия: MIT
🖥 Github (https://github.com/adamchainz/django-cors-headers)
@Python_Community_ru
🌟 Этот инструмент позволяет вашему Django-приложению принимать запросы из браузеров, отправленные с других доменов. Это особенно полезно для API-серверов или приложений, которые обслуживают фронтенд и бэкенд с разных доменов или портов.
🌟 Инструмент позволяет гибко управлять настройками CORS, включая поддержку конкретных методов, заголовков и настроек безопасности. Например, вы можете настроить разрешение только для определённых доменов или включить временный доступ для локальной разработки. Однако важно понимать риски, связанные с CORS, поскольку неправильная конфигурация может открыть доступ к вашим данным для нежелательных источников.
🔐 Лицензия: MIT
🖥 Github (https://github.com/adamchainz/django-cors-headers)
@Python_Community_ru
🧠 Human3R: Инновации в 3D-моделировании человека
Human3R предлагает эффективный подход к 3D-восстановлению человека с использованием единой модели и этапа. Система позволяет проводить обучение всего за один день на одном GPU, обеспечивая высокую производительность и простоту в использовании.
🚀 Основные моменты:
- Одноэтапное восстановление 3D-моделей.
- Быстрое обучение на одном GPU.
- Поддержка различных форматов ввода.
- Интуитивно понятный интерфейс для визуализации результатов.
📌 GitHub:
#python
@Python_Community_ru
https://github.com/fanegg/Human3R
Human3R предлагает эффективный подход к 3D-восстановлению человека с использованием единой модели и этапа. Система позволяет проводить обучение всего за один день на одном GPU, обеспечивая высокую производительность и простоту в использовании.
🚀 Основные моменты:
- Одноэтапное восстановление 3D-моделей.
- Быстрое обучение на одном GPU.
- Поддержка различных форматов ввода.
- Интуитивно понятный интерфейс для визуализации результатов.
📌 GitHub:
#python
@Python_Community_ru
https://github.com/fanegg/Human3R
GitHub
GitHub - fanegg/Human3R: An unified model for 4D human-scene reconstruction
An unified model for 4D human-scene reconstruction - fanegg/Human3R
🖥 Python 3.15 - что нового
Вышла новая версия Python 3.15, и в ней несколько заметных обновлений, особенно для тех, кто работает с производительностью и отладкой.
🔧 Главные изменения:
- Добавлен новый модуль profiling.sampling — инструмент статистического профилирования,
который позволяет анализировать производительность кода без пауз и overhead’а.
- Оптимизирована стандартная библиотека: многие функции теперь работают быстрее.
- Улучшен сборщик мусора и работа с памятью.
- Расширена поддержка аннотаций типов.
- Повышена стабильность и снижена нагрузка на интерпретатор при многопоточности.
📈 Зачем обновляться:
- Новый профайлер поможет находить узкие места в коде без остановки приложения.
- Версия стабильна и готова для продакшена.
- Меньше задержек, меньше overhead, лучше работа с async-кодом и большими данными.
Подробнее: https://docs.python.org/3.15/whatsnew/3.15.html
#Python #Update #Performance #Developers
@Python_Community_ru
Вышла новая версия Python 3.15, и в ней несколько заметных обновлений, особенно для тех, кто работает с производительностью и отладкой.
🔧 Главные изменения:
- Добавлен новый модуль profiling.sampling — инструмент статистического профилирования,
который позволяет анализировать производительность кода без пауз и overhead’а.
- Оптимизирована стандартная библиотека: многие функции теперь работают быстрее.
- Улучшен сборщик мусора и работа с памятью.
- Расширена поддержка аннотаций типов.
- Повышена стабильность и снижена нагрузка на интерпретатор при многопоточности.
📈 Зачем обновляться:
- Новый профайлер поможет находить узкие места в коде без остановки приложения.
- Версия стабильна и готова для продакшена.
- Меньше задержек, меньше overhead, лучше работа с async-кодом и большими данными.
Подробнее: https://docs.python.org/3.15/whatsnew/3.15.html
#Python #Update #Performance #Developers
@Python_Community_ru
👍4🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
🧠 The Markovian Thinker: Революция в обучении LLM
The Markovian Thinker предлагает новый подход к обучению языковых моделей с использованием фиксированного размера состояния, что снижает вычислительные затраты. Метод Delethink разбивает генерацию на фиксированные части, позволяя модели эффективно продвигать мысли, сохраняя контекст.
🚀Основные моменты:
- Новый парадигма "Марковское мышление" для LLM.
- Метод Delethink использует фиксированные размеры контекста.
- Сравнение с LongCoT показывает лучшие результаты при меньших затратах.
- Поддержка масштабирования до 96K токенов.
- Применение в современных LLM, таких как GPT-OSS и Qwen3.
📌 GitHub: https://github.com/McGill-NLP/the-markovian-thinker
@Python_Community_ru
The Markovian Thinker предлагает новый подход к обучению языковых моделей с использованием фиксированного размера состояния, что снижает вычислительные затраты. Метод Delethink разбивает генерацию на фиксированные части, позволяя модели эффективно продвигать мысли, сохраняя контекст.
🚀Основные моменты:
- Новый парадигма "Марковское мышление" для LLM.
- Метод Delethink использует фиксированные размеры контекста.
- Сравнение с LongCoT показывает лучшие результаты при меньших затратах.
- Поддержка масштабирования до 96K токенов.
- Применение в современных LLM, таких как GPT-OSS и Qwen3.
📌 GitHub: https://github.com/McGill-NLP/the-markovian-thinker
@Python_Community_ru
🤖 Dexter: Автономный финансовый исследователь
Dexter - это интеллектуальный агент, который анализирует финансовые данные, планирует задачи и учится на ходу. Он превращает сложные финансовые вопросы в четкие исследовательские планы, используя актуальные рыночные данные и самопроверку для достижения точных ответов.
🚀Основные моменты:
- Автоматическое планирование задач для сложных запросов
- Автономное выполнение с использованием финансовых инструментов
- Самопроверка и итерации для повышения точности
- Доступ к актуальным финансовым данным
- Защита от бесконечного выполнения задач
📌 GitHub: https://github.com/virattt/dexter
@Python_Community_ru
Dexter - это интеллектуальный агент, который анализирует финансовые данные, планирует задачи и учится на ходу. Он превращает сложные финансовые вопросы в четкие исследовательские планы, используя актуальные рыночные данные и самопроверку для достижения точных ответов.
🚀Основные моменты:
- Автоматическое планирование задач для сложных запросов
- Автономное выполнение с использованием финансовых инструментов
- Самопроверка и итерации для повышения точности
- Доступ к актуальным финансовым данным
- Защита от бесконечного выполнения задач
📌 GitHub: https://github.com/virattt/dexter
@Python_Community_ru