Python | Machine Learning | Coding | R
62.6K subscribers
1.13K photos
67 videos
143 files
787 links
List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

Discover powerful insights with Python, Machine Learning, Coding, and Rβ€”your essential toolkit for data-driven solutions, smart alg

Help and ads: @hussein_sheikho

https://telega.io/?r=nikapsOH
Download Telegram
Media is too big
VIEW IN TELEGRAM
πŸ”₯ MIT has updated its famous course 6.S191: Introduction to Deep Learning.

The program covers topics of #NLP, #CV, #LLM and the use of technology in medicine, offering a full cycle of training - from theory to practical classes using current versions of libraries.

The course is designed even for beginners: if you know how to take derivatives and multiply matrices, everything else will be explained in the process.

The lectures are released for free on YouTube and the #MIT platform on Mondays, with the first one already available

.

All slides, #code and additional materials can be found at the link provided.

πŸ“Œ Fresh lecture : https://youtu.be/alfdI7S6wCY?si=6682DD2LlFwmghew

#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming  #Keras

https://t.me/CodeProgrammer βœ…
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘12πŸ†’3πŸ”₯2πŸ†2πŸ’―1
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘13πŸ‘Ύ2πŸŽ‰1
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ’―13πŸ‘7πŸ”₯1πŸŽ‰1
Machine Learning from Scratch by Danny Friedman

This book is for readers looking to learn new machine learning algorithms or understand algorithms at a deeper level. Specifically, it is intended for readers interested in seeing machine learning algorithms derived from start to finish. Seeing these derivations might help a reader previously unfamiliar with common algorithms understand how they work intuitively. Or, seeing these derivations might help a reader experienced in modeling understand how different algorithms create the models they do and the advantages and disadvantages of each one.

This book will be most helpful for those with practice in basic modeling. It does not review best practicesβ€”such as feature engineering or balancing response variablesβ€”or discuss in depth when certain models are more appropriate than others. Instead, it focuses on the elements of those models.

🌟 Link: https://dafriedman97.github.io/mlbook/content/introduction.html

#DataScience #MachineLearning #CheatSheet #stats #analytics #ML #IA #AI #programming #code #rstats #python #deeplearning #DL #CNN #Keras #R

https://t.me/CodeProgrammer βœ…
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘12πŸ”₯3❀2