Software Engineer Labdon
600 subscribers
43 photos
4 videos
2 files
748 links
👑 Software Labdon

حمایت مالی:
https://www.coffeete.ir/mrbardia72

ادمین:
@mrbardia72
Download Telegram
🔵 عنوان مقاله
The Over-Framework Trap: Preventing the Maze of Test Complexity

🟢 خلاصه مقاله:
Roman Kostenko هشدار می‌دهد به دام «Over‑Framework» نیفتید؛ جایی که چارچوب‌های تست با لایه‌های اضافی، wrapperها و DSLهای پیچیده بهره‌وری را کم و نگه‌داری را سخت می‌کنند. او توصیه می‌کند از ساده‌ترین راهکار شروع کنید، تا حد امکان از ابزارها و الگوهای پذیرفته‌شده استفاده کنید، و فقط زمانی abstraction اضافه کنید که درد تکرار واقعاً احساس می‌شود—آن هم به سبک مینیمال تا خوانایی تست‌ها حفظ شود. همچنین بر قابلیت اتکا و مشاهده‌پذیری تأکید دارد: داده‌ی تست قطعی، setup/teardown تمیز، پیام خطای مفید، لاگ مختصر و سریع‌بودن چرخه‌ی بازخورد. چارچوب را به‌تدریج و بر اساس نیازهای واقعی رشد دهید، بخش‌های بلااستفاده را حذف کنید و با مستندسازی سبک و بازبینی‌های سبک از پیچیدگی ناخواسته جلوگیری کنید.

#TestAutomation #SoftwareTesting #QA #TestFramework #Simplicity #CleanCode #DevOps #BestPractices

🟣لینک مقاله:
https://cur.at/NeRvNG1?m=web


👑 @software_Labdon
🤡1
🔵 عنوان مقاله
AI Picks Tests To Run On A Bug

🟢 خلاصه مقاله:
این مقاله یک نمونه عملی از کاربست هوش مصنوعی در تست نرم‌افزار را نشان می‌دهد: Gleb Bahmutov توضیح می‌دهد چگونه می‌توان با تحلیل سرنخ‌های مرتبط با باگ—مثل پیام خطا، stack trace، تغییرات اخیر کد و نسبت تاریخی میان بخش‌های کد و تست‌ها—مجموعه‌ای از آزمون‌های واقعاً مرتبط را انتخاب و اجرا کرد. این روش با اجرای هدفمند تست‌ها، زمان بازخورد را کوتاه‌تر و هزینه اجرا را کمتر می‌کند و هم در محیط توسعه محلی و هم در CI قابل استفاده است. در عین حال، با حفظ نظارت انسانی، سنجش دقت و پوشش انتخاب‌ها، ثبت دلایل انتخاب هر تست و در صورت ابهام، بازگشت به اجرای کامل، اعتمادپذیری حفظ می‌شود. نتیجه، چرخه عیب‌یابی سریع‌تر و تمرکز بیشتر روی تست‌هایی است که بیشترین احتمال کشف یا بازتولید باگ را دارند.

#SoftwareTesting #AI #TestAutomation #QualityAssurance #BugFixing #TestSelection #CICD

🟣لینک مقاله:
https://cur.at/QPMAEXI?m=web


👑 @software_Labdon
🔵 عنوان مقاله
What does successful automation look like to you? Have you ever seen it?

🟢 خلاصه مقاله:
اتوماسیون موفق در شرکت‌های مختلف شکل‌های متفاوتی دارد، اما نقطه مشترک آن نتایج تجاری ملموس و اعتماد تیم است: چرخه انتشار سریع‌تر، خطاهای فراری کمتر، و شکست‌های معنادار به‌جای نویز. تجربه‌های مطرح‌شده در Reddit بر چند اصل تاکید دارند: پایداری و سرعت در CI/CD، هرم تست با تمرکز بر unit و integration و تعداد اندک E2E برای مسیرهای حیاتی، کد تست قابل نگهداری و مدیریت داده/محیط قابل اتکا. مالکیت مشترک بین Dev و QA، معیارهای روشن، و قابلیت مشاهده‌پذیری (لاگ، اسکرین‌شات، ترِیس و ردیابی flaky) ضروری‌اند. موفقیت یعنی ROI واقعی: زمان آزادشده برای بهبود محصول، کاهش hotfix، و اطمینان در هر PR—و دوری از ضدالگوهایی مثل افراط در UI tests یا تعقیب پوشش ۱۰۰٪.

#TestAutomation #SoftwareTesting #QA #DevOps #CICD #AutomationStrategy #QualityEngineering

🟣لینک مقاله:
https://cur.at/w3kN7Xu?m=web


👑 @software_Labdon
🔵 عنوان مقاله
The Automation Maturity Pyramid

🟢 خلاصه مقاله:
این هرم با عنوان The Automation Maturity Pyramid روشی از David Ingraham برای ارزیابی بلوغ اتوماسیون تست در چهار مرحله است: ایجاد اعتماد به نتایج تست‌ها، بازخورد کوتاه‌مدت و سریع در جریان توسعه، افزایش سرعت توسعه با تکیه بر تست‌های پایدار، و در نهایت بازخورد بلندمدت برای حفظ کیفیت در گذر زمان. ایده اصلی این است که اتوماسیون باید هدفمند باشد: ابتدا تست‌های قابل‌اعتماد و غیرلغزان برای مسیرهای حیاتی بسازیم، سپس بازخورد سریع در CI و روی هر تغییر فراهم کنیم، بعد با کاهش زمان چرخه و افزایش اطمینان، توسعه را شتاب دهیم، و در پایان با چک‌های دوره‌ای، سنجه‌های عملکرد و نشانه‌های تولید، سلامت بلندمدت سیستم را پایش کنیم. این چارچوب به تیم‌ها کمک می‌کند شکاف‌ها را بشناسند، سرمایه‌گذاری‌ها را اولویت‌بندی کنند و از دام‌هایی مثل تمرکز زودهنگام بر پوشش یا سرعت بدون اعتماد پرهیز کنند.

#TestAutomation #AutomationMaturity #SoftwareTesting #QualityEngineering #DevOps #CICD #FeedbackLoops #SoftwareDelivery

🟣لینک مقاله:
https://cur.at/syMd8RG?m=web


👑 @software_Labdon
🔵 عنوان مقاله
This one feature from Cypress I didn't know I needed

🟢 خلاصه مقاله:
کنیت Bati تجربه‌ی مهاجرت یک مجموعه تست انتها‌به‌انتها از Cypress به Playwright را روایت می‌کند و نشان می‌دهد تفاوت‌های کوچک چقدر در کار روزمره اثر دارند. مهم‌ترین غافلگیری او فقدان همان قابلیت «گزارش فرمان‌ها با عکس‌های لحظه‌ای DOM و زمان‌گردانی» در Cypress بود؛ قابلیتی که عیب‌یابی ناپایداری و اشکالات انتخاب‌گرها را بسیار سریع می‌کرد.

در Playwright او با فعال‌کردن Trace Viewer، استفاده هدفمند از trace در CI، تکیه بر auto-waiting و assertionهای دقیق‌تر، و افزودن خروجی‌های کمکی (لاگ شبکه، اسکرین‌شات‌های هدفمند) بیشترِ آن بازخورد را جبران کرد. با استاندارد کردن test idها و کمی بازطراحی تست‌ها برای حذف فرض‌های زمانی، جریان کاری جدید شکل گرفت و در نهایت با سرعت اجرای بالاتر به پایداری مشابه رسیدند.

جمع‌بندی: هیچ‌کدام بر دیگری مطلقاً برتری ندارند؛ اما ارگونومی ابزار سرعت تیم را می‌سازد. در مهاجرت، زمان بگذارید تا چرخه‌های بازخورد محبوب‌تان را بازسازی کنید و جاهایی که همتای مستقیم ندارند، عادت‌های جدید بسازید. این‌گونه می‌توان مزایای Playwright را به‌دست آورد بدون از دست دادن تجربه توسعه‌دهنده‌ای که با Cypress داشتید.

#Cypress #Playwright #E2ETesting #TestAutomation #Migration #QA #JavaScript

🟣لینک مقاله:
https://cur.at/ZiBGzOL?m=web


👑 @software_Labdon
1
🔵 عنوان مقاله
Supercharging Test Automation with Java Faker: Generating Realistic Test Data

🟢 خلاصه مقاله:
با استفاده از داده‌های واقع‌نما، تست‌ها خطاهای پنهان را بهتر آشکار می‌کنند و از شکنندگی ناشی از مقادیر ثابت دور می‌مانند. Java Faker یک کتابخانه سبک در Java است که نام، آدرس، ایمیل، داده‌های اینترنتی، تاریخ و زمان و موارد دیگر را با پشتیبانی از locale تولید می‌کند و با قابلیت seed، توازن میان واقع‌نمایی و تکرارپذیری را فراهم می‌سازد. این ابزار به‌سادگی در واحدتست‌ها و سناریوهای API و UI با JUnit، TestNG، Selenium و REST Assured ترکیب می‌شود تا فرم‌ها را با داده‌های معتبر پر کند و payloadهای واقعی بسازد. بهترین رویه‌ها شامل کنترل تصادفی بودن با seed، تطبیق با قوانین و قیود دامنه، حفظ یکپارچگی داده، تولید موارد مرزی و منفی، بومی‌سازی و پرهیز از تصادفی‌سازی بیش‌ازحد است. نتیجه، پوشش بهتر، پایداری بیشتر و نگه‌داری آسان‌تر است. Sajith Dilshan در این مرور نشان می‌دهد چگونه با تکیه بر Java Faker می‌توان خودکارسازی تست را توانمندتر کرد.

#TestAutomation #JavaFaker #TestData #SoftwareTesting #QA #Selenium #APITesting

🟣لینک مقاله:
https://cur.at/GmPnbFy?m=web


👑 @software_Labdon
1
🔵 عنوان مقاله
Full Pipeline: Appium + WebdriverIO + BrowserStack + GitHub Actions for Native Mobile Tests

🟢 خلاصه مقاله:
این ویدئوی ۱۵ دقیقه‌ای از Joan Esquivel Montero یک مسیر کامل و فشرده برای خودکارسازی تست‌های اپلیکیشن‌های بومی موبایل نشان می‌دهد: اجرای تست‌ها با Appium، مدیریت و نگارش تست‌ها با WebdriverIO، اجرای گسترده روی دستگاه‌های واقعی در BrowserStack، و یکپارچه‌سازی فرآیند در GitHub Actions.

در ویدئو نحوه پیکربندی WebdriverIO + Appium، ساختاردهی تست‌ها با Page Object Model، انتخاب سلکتورهای پایدار و مدیریت هوشمند انتظارها برای کاهش فلاکی توضیح داده می‌شود. سپس اجرای ابری در BrowserStack را می‌بینید: آپلود بیلد، تعریف capabilities برای دستگاه‌ها و نسخه‌های مختلف، موازی‌سازی و استفاده از ویدئو/لاگ/اسکرین‌شات برای دیباگ سریع.

در بخش CI/CD، یک Workflow در GitHub Actions روی Push و Pull Request اجرا می‌شود، وابستگی‌ها را نصب و کش می‌کند، با Secrets امن به BrowserStack وصل می‌شود، با ماتریس Job تست‌ها را گسترش می‌دهد و گزارش‌ها را به‌صورت Artifact ذخیره می‌کند تا وضعیت مرج‌ها کنترل شود. نکات عملی مثل Retry، بهبود همگام‌سازی شبکه، استفاده از Environment Variables، تمایز اجرای محلی و ریموت، و BrowserStack Local برای محیط‌های داخلی نیز پوشش داده می‌شود. خروجی، یک پایپ‌لاین مقیاس‌پذیر و قابل‌انتقال است که بازخورد قابل‌اعتماد را برای هر تغییر فراهم می‌کند.

#Appium #WebdriverIO #BrowserStack #GitHubActions #MobileTesting #TestAutomation #CICD #NativeApps

🟣لینک مقاله:
https://cur.at/GI1n0KX?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Testers: Stop Competing with AI. Start Pairing with It

🟢 خلاصه مقاله:
این مقاله می‌گوید به‌جای رقابت با AI، آن را به‌عنوان شریک کاری به کار بگیرید. مدل همکاری انسان–AI که توسط Rahul Parwal معرفی شده، به تسترها کمک می‌کند مرز کار انسان و کار قابل‌واگذاری به AI را مشخص کنند: انسان‌ها مسئول زمینه، تحلیل ریسک، قضاوت اخلاقی، استراتژی تست و ارتباط با ذی‌نفعان هستند؛ AI در مقیاس و سرعت می‌درخشد—ایده‌پردازی گسترده، ساخت دادهٔ تست، تحلیل لاگ‌ها، کشف الگوها و خودکارسازی تکراری‌ها. مقاله الگوهای جفت‌کاری عملی ارائه می‌دهد (ایده‌سازی با AI و پالایش انسانی، ردیابی و پوشش با کمک AI و اعتبارسنجی انسانی) و بر ریل‌گذاری‌های ضروری مثل محرمانگی، کنترل خطا/سوگیری و بازبینی انسانی تأکید دارد. نتیجه: کیفیت بهتر و تحویل سریع‌تر، با تمرکز بیشتر تسترها بر کارهای خلاق و اثرگذار.

#SoftwareTesting #AI #HumanAICollaboration #QualityEngineering #TestAutomation #ExploratoryTesting #QA

🟣لینک مقاله:
https://cur.at/zXAw6Td?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Implement POM design pattern in the Automation test framework

🟢 خلاصه مقاله:
این مقاله با تاکید بر اینکه Page Object Model یک الگوی رایج اما چندشکلی در تست خودکار است، نمونه‌ای عملی از پیاده‌سازی آن را در Python توسط Đinh Công Cảnh نشان می‌دهد. در این رویکرد، یک BasePage برای قابلیت‌های مشترک (مثل جست‌وجوی عناصر و مدیریت waits) و کلاس‌های Page برای هر صفحه/کامپوننت با متدهای سطح‌بالا تعریف می‌شوند؛ تست‌ها به‌جای کار با driver، این متدها را فراخوانی می‌کنند تا خوانا، پایدار و قابل نگه‌داری باشند. نکات کلیدی شامل جداسازی مسئولیت‌ها، پنهان‌سازی locators، متمرکزسازی waits برای کاهش flakiness، سازمان‌دهی ساختار پروژه و گزارش‌دهی مؤثر است. در عین حال به موازنه‌ها نیز اشاره می‌شود: POM در پروژه‌های بزرگ و در حال تغییر سودمندتر است و در موارد کوچک ممکن است اضافی به نظر برسد؛ بنابراین باید متناسب با ابزار، CI/CD و نیازهای تیم اتخاذ شود.

#PageObjectModel #POM #TestAutomation #Python #Selenium #QA #AutomationFramework #SoftwareTesting

🟣لینک مقاله:
https://cur.at/7s1or7a?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Playwright Agentic Coding Tips

🟢 خلاصه مقاله:
با نگاهی عمل‌گرایانه، این مقاله نشان می‌دهد چگونه می‌توان با رویکرد agentic از AI برای نوشتن تست‌های Playwright استفاده کرد: ابتدا برنامه‌ریزی و خردکردن سناریوها، سپس حلقه‌ای از تولید تغییرات کوچک، اجرای تست، مشاهده خطا و بازبینی. برای موفقیت، باید کانتکست کافی به مدل بدهیم (Playwright config، الگوهای کدنویسی TypeScript/JavaScript، مسیرهای اپ، نقش‌ها، test-idها، و استراتژی لاگین)، و آن را به استفاده از locatorهای پایدار مثل getByRole و getByTestId هدایت کنیم.
این راهنما بر قابلیت اطمینان تاکید دارد: انتظارهای مبتنی بر locator به جای sleep، شبیه‌سازی شبکه یا routeها در صورت نیاز، کنترل زمان، داده‌سازی و تمیزکاری ایزوله با fixtures، و استخراج helperهای تکرارشونده. در CI، گردآوری trace، ویدیو و اسکرین‌شات، کنترل parallelism/sharding، استفاده محدود از retry، پین‌کردن نسخه‌ها، و ایمن‌سازی secrets توصیه شده است.
برای ساختار کد، از Page Object/Screen Object به‌صورت منعطف استفاده کنید، نام‌گذاری و مستندسازی شفاف داشته باشید، و ترکیبی از component test و end-to-end برای پوشش متوازن بسازید. الگوهای پرامپت شامل few-shotهای خوب و بد، بازیابی اسناد مرتبط، و واداشتن مدل به توضیح فرضیه‌های flakiness و توجیه انتخاب locatorهاست. در نهایت، human-in-the-loop، بازبینی کد و هدف‌گذاری پوشش، کلید حفظ کیفیت و نگه‌داشت هستند.
#Playwright #AgenticCoding #TestAutomation #EndToEndTesting #AI #LLM #QualityEngineering

🟣لینک مقاله:
https://cur.at/iDPLZwj?m=web


👑 @software_Labdon
🔵 عنوان مقاله
What's new in JUnit 6: Key Changes and Improvements

🟢 خلاصه مقاله:
JUnit 6 منتشر شده و پس از سال‌ها نخستین نسخهٔ عمدهٔ این چارچوب است. این نسخه با تمرکز بر شفافیت و انعطاف‌پذیری، بهبود چرخهٔ اجرای تست، قدرت بیشتر در توسعه‌پذیری، اجرای موازی کارآمدتر، و یکپارچگی عمیق‌تر با IDEها و محیط‌های CI ارائه می‌شود. مسیر مهاجرت برای تیم‌های روی JUnit 4 و JUnit 5 هم با راهنمایی و ملاحظات سازگاری پوشش داده شده است. در این معرفی، Vladimir Dmitrienko نکات کلیدی و کاربردی را به‌همراه نمونه‌ها و بهترین‌روش‌ها توضیح می‌دهد.

#JUnit6 #JUnit #Java #UnitTesting #SoftwareTesting #TestAutomation #DevTools

🟣لینک مقاله:
https://cur.at/HGYIcvY?m=web


👑 @software_Labdon
2
🔵 عنوان مقاله
How Playwright Runs Workers and Test Fixtures (Parallel vs Serial vs Default)!

🟢 خلاصه مقاله:
این مقاله از Thananjayan Rajasekaran به‌صورت عملی نشان می‌دهد Playwright Test چگونه workers و test fixtures را مدیریت می‌کند و تفاوت حالت‌های default، parallel و serial چیست. ابتدا توضیح می‌دهد که به‌طور پیش‌فرض فایل‌های تست روی چند worker به‌صورت موازی اجرا می‌شوند اما تست‌های داخل هر فایل به‌صورت ترتیبی اجرا می‌گردند؛ همچنین به تعامل retries، projects و گزینه‌هایی مانند --workers و sharding برای کنترل سرعت و پایداری اشاره می‌کند. سپس روش‌های افزایش همزمانی را بررسی می‌کند: فعال‌کردن fullyParallel در تنظیمات یا استفاده از test.describe.configure({ mode: 'parallel' }) برای موازی‌سازی بخشی از تست‌ها، همراه با هشدار درباره ریسک‌های وضعیت مشترک و flaky شدن. در بخش serial، با test.describe.serial یا تنظیم mode: 'serial' می‌توان اجرای ترتیبی و توقف زنجیره پس از شکست را تضمین کرد؛ راهکاری که برای گردش‌کارهای وابسته یا منابع غیرقابل‌اشتراک میان workers مفید است، هرچند توصیه می‌شود فقط در صورت نیاز استفاده شود. بخش مهم دیگر به fixtures می‌پردازد: تفاوت بین per-test و worker-scoped و تأثیر مستقیم آن‌ها بر موازی‌سازی؛ اینکه worker-scoped بین workers به‌اشتراک گذاشته نمی‌شود و ممکن است چند نمونه مستقل از یک منبع ایجاد شود. مقاله با نمونه‌کدهای روشن برای تنظیم workers، فعال‌سازی fullyParallel، علامت‌گذاری suiteها به‌صورت serial یا parallel و ترکیب آن‌ها با projects و retries، یک الگوی ذهنی شفاف برای انتخاب بهینه بین default، parallel و serial ارائه می‌دهد تا هم سرعت اجرا بالا برود و هم پایداری CI حفظ شود.

#Playwright #Testing #E2E #ParallelTesting #TestAutomation #JavaScript #Fixtures #CI

🟣لینک مقاله:
https://cur.at/93wY1jL?m=web


👑 @software_Labdon
1
🔵 عنوان مقاله
The Day I Became an AI "Babysitter" (And Why I'm Not Ashamed of It)

🟢 خلاصه مقاله:
** این مقاله از Santhosh Siddegowda نشان می‌دهد به‌کارگیری AI در تست به‌جای جایگزینی کامل، به معنای «نظارت هوشمندانه» است. او توضیح می‌دهد چگونه کیس‌های کلاسیک QA به جریان‌های AI-assisted تبدیل می‌شوند: بازنویسی بر پایه قصد کاربر و پرامپت، تعریف گاردریل‌ها و اوراکل‌های تست، و افزودن بازبینی Human-in-the-Loop برای مهار ناپایداری و خطاهای مدل. نویسنده بر عملیات‌پذیری تأکید می‌کند—نسخه‌بندی پرامپت‌ها، لاگ‌برداری و ارزیابی مداوم کیفیت—و نتیجه می‌گیرد که هرچند AI سرعت و پوشش تست را افزایش می‌دهد، موفقیت به سنجش‌پذیری، محرمانگی داده، معیارهای پذیرش روشن و نقش فعال انسان وابسته است. جمع‌بندی او: با موارد مناسب شروع کنید، گاردریل و اوراکل شفاف بسازید، اثر را اندازه‌گیری کنید و قضاوت انسانی را در مرکز نگه دارید؛ «AI babysitting» رویکردی مسئولانه برای قابل‌اعتماد کردن AI در QA است.

#AIinTesting #QA #TestAutomation #LLM #HumanInTheLoop #PromptEngineering #SoftwareQuality

🟣لینک مقاله:
https://cur.at/PnnqBWN?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Test Automation: How to Turn Regression Routine into a Reliable System

🟢 خلاصه مقاله:
این مقاله روایت عملی Maksim Laptev از گذار تیم از رگرسیون دستی به یک سامانه خودکار و قابل اتکاست. او بر اولویت‌بندی مبتنی بر ریسک تأکید می‌کند: شروع با اسموک تست‌های سریع، افزودن تست‌های پایدار در سطح API برای هسته سیستم و خودکارسازی محدود اما هدفمند مسیرهای UI پرارزش، در کنار حفظ تست‌های اکتشافی. معیارهای انتخاب ابزار شامل هم‌راستایی با زبان تیم، یکپارچگی با CI/CD، اجرای موازی، گزارش‌دهی و نگهداشت‌پذیری است و پرهیز از تنوع بی‌رویه ابزار توصیه می‌شود. در معماری، جداسازی لایه‌ها (الگوهایی مانند Page Object/Screenplay)، مدیریت داده و محیط تکرارپذیر، حذف منابع flakiness با انتظارهای قطعی و setup/teardown ایمن، و برچسب‌گذاری و شاردینگ برای سرعت، نقش کلیدی دارند. ادغام در CI/CD با دروازه‌های سریع، رگرسیون‌های دوره‌ای و سنجه‌هایی مانند پوشش جریان‌های حیاتی، نرخ flake و زمان رفع، کیفیت را پایدار می‌کند. در نهایت با یک نقشه راه گام‌به‌گام، آموزش و کدنویسی استاندارد برای تست‌ها، و بازبینی و هرس منظم، می‌توان سامانه‌ای ساخت که چرخه بازخورد را کوتاه و ریسک انتشار را کم می‌کند.

#TestAutomation #SoftwareTesting #QA #RegressionTesting #CICD #DevOps #SDET

🟣لینک مقاله:
https://cur.at/Z0J7xPm?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Intelligent QA Orchestration with Large Language Models — A modern approach to Quality Assurance

🟢 خلاصه مقاله:
**
این رویکرد با تکیه بر Large Language Models (LLMs) پیشنهاد می‌کند که از یک لایه ارکستریشن هوشمند برای پیوند دادن نیازمندی‌ها، کد، تله‌متری و ابزارهای موجود استفاده شود تا تست‌ها به‌صورت هوشمند و تا حدی خودمختار تولید، اولویت‌بندی و نگهداری شوند. در این مدل، عامل‌های AI کارهایی مانند آماده‌سازی محیط، داده‌گذاری، اجرای تست، عیب‌یابی و ثبت خودکار باگ را هماهنگ می‌کنند و با اتصال به CI/CD و ابزارهای رهگیری، پوشش و ریسک را به‌صورت پیوسته بهبود می‌دهند. طرح پیشنهادی بر معماری مرجع با کانکتورها، پایگاه دانش مشترک و ریل‌های حاکمیتی تمرکز دارد و بر ارزیابی خروجی‌های AI، human-in-the-loop، بازتولیدپذیری و حفظ حریم داده تأکید می‌کند. چالش‌هایی مانند هالوسینیشن، تعیین‌پذیری، هزینه و امنیت با تکیه بر گراند کردن مدل در منابع معتبر، خروجی‌های ساختاریافته و سنجش ROI مدیریت می‌شوند. به‌گفته Sam Treweek مسیر عملی از موارد استفاده محدود مانند انتخاب رگرسیون هوشمند، تشخیص تست‌های flaky و نگهداری خودترمیم‌کننده آغاز می‌شود و با بلوغ ابزارها و حاکمیت گسترش می‌یابد.

#QA #SoftwareTesting #LLM #AIinTesting #TestAutomation #QualityEngineering #CICD

🟣لینک مقاله:
https://cur.at/ONc5Qkn?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Cypress Studio: No-Code Test Generation Now Built In

🟢 خلاصه مقاله:
**جنیفر Shehane از Cypress اعلام کرد که Cypress Studio، قابلیت تولید تست بدون کدنویسی، اکنون به‌صورت پیش‌فرض فعال است و بدون تنظیمات اضافی در دسترس قرار می‌گیرد. به‌زودی نیز قابلیت‌های مبتنی بر AI برای پیشنهاد گام‌ها و_assertion_های تست اضافه می‌شود تا نوشتن سناریوها سریع‌تر و پوشش کامل‌تر شود. این تغییر آستانه ورود را پایین می‌آورد، ضبط تعاملات واقعی کاربر را ساده می‌کند و امکان ادغام و نگه‌داری تست‌ها در جریان‌های مرسوم تیم‌های توسعه و QA را فراهم می‌سازد.

#Cypress #CypressStudio #TestAutomation #NoCode #QA #EndToEndTesting #AITesting #JavaScript

🟣لینک مقاله:
https://cur.at/4pwHxTJ?m=web


👑 @software_Labdon
🔵 عنوان مقاله
10 Tips for Writing Playwright Tests with Cursor

🟢 خلاصه مقاله:
**این مقاله با عنوان «10 Tips for Writing Playwright Tests with Cursor» نشان می‌دهد چگونه یک IDE هوشمند مثل Cursor می‌تواند نوشتن و نگه‌داری تست‌های Playwright را سریع‌تر و قابل‌اعتمادتر کند. Filip Hric با مثال‌های عملی توضیح می‌دهد Cursor در کجاها کمک می‌کند—از ساخت اسکلت تست و پیشنهاد selector و assertion تا توضیح خطاها و پیشنهاد refactor—و تأکید می‌کند که قضاوت انسانی همچنان ضروری است.
لبّ توصیه‌ها بر اصولی است مثل استفاده از locatorهای پایدار، حذف timeoutهای دلخواه با انتظارهای مبتنی بر locator، سازمان‌دهی کد با fixture و الگوهای صفحه، تکیه بر trace و screenshot و network interception برای دیباگ، و پیکربندی parallelism، retry و CI برای پایداری. نقش Cursor سرعت‌دادن به هر گام است: تولید boilerplate، استخراج utilityها، بهبود خوانایی و ارائه توضیحات سریع هنگام خطا—البته با بازبینی دقیق توسط توسعه‌دهنده.
جمع‌بندی: ترکیب سرعت AI در Cursor با اصول درست تست‌نویسی و بازبینی انسانی، هم سرعت توسعه را بالا می‌برد و هم کیفیت و پایداری مجموعه تست‌های Playwright را بهبود می‌دهد.

#Playwright #Cursor #Testing #TestAutomation #EndToEndTesting #QA #AIIDE #JavaScript

🟣لینک مقاله:
https://cur.at/hFD3dyh?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Mastering Pytest: The Complete Guide to Modern Python Testing

🟢 خلاصه مقاله:
این مقاله با عنوان Mastering Pytest: The Complete Guide to Modern Python Testing مروری جامع و عملی بر Pytest برای توسعه‌دهندگان Python ارائه می‌دهد. نویسنده، Sharath Chandran، از راه‌اندازی و ساختار پروژه تا امکانات کلیدی مانند fixtures، parametrization، markers و assertهای خوانا را پوشش می‌دهد و سپس به مباحث پیشرفته‌ای مثل افزونه‌های pytest-cov و pytest-xdist، استفاده از Hypothesis برای property-based testing، mocking با unittest.mock یا pytest-mock، تست‌های async و ابزارهایی مانند tmp_path و monkeypatch می‌پردازد. همچنین ادغام تست‌ها با CI/CD (مانند GitHub Actions و GitLab CI و Jenkins)، تولید گزارش‌ها و اعمال آستانه‌های coverage و نکات بهترین‌روش‌ها برای ساخت تست‌های سریع، پایدار و قابل‌نگهداری توضیح داده می‌شود. نتیجه اینکه چه برای شروع با Pytest و چه برای ارتقای مهارت‌ها، این راهنما الگوها و نکات کاربردی لازم برای مدرن‌سازی فرآیند تست در Python را فراهم می‌کند.

#Pytest #Python #Testing #TestAutomation #SoftwareTesting #TDD #CICD

🟣لینک مقاله:
https://cur.at/5l6Ats4?m=web


👑 @software_Labdon
🔵 عنوان مقاله
API Testing vs Browser Automation

🟢 خلاصه مقاله:
دغدغه انتخاب بین API Testing و Browser Automation در وب‌اپ‌ها با یک رویکرد ترکیبی حل می‌شود: بیشترین پوشش را با تست‌های سریع و پایدار API بگیرید و تعداد کمی سناریوی UI انتها‌به‌انتها را برای مسیرهای واقعاً حیاتی نگه دارید. API Testing برای قوانین کسب‌وکار، اعتبارسنجی داده، احراز هویت/مجوزها و Contract Tests سریع و قابل اتکاست؛ در مقابل، UI فقط برای چیزی که صرفاً UI می‌تواند ثابت کند ارزش دارد: تجربه کاربر، رندر، مسیرها و رفتار واقعی مرورگر. برای کاهش شکنندگی، داده‌سازی/پاک‌سازی را از طریق API انجام دهید، سرویس‌های ثالث را Stub/Mock کنید، بین سرویس‌ها Contract Tests داشته باشید و لایه UI را کوچک اما پرارزش حفظ کنید. معیار تصمیم‌گیری ساده است: اگر پرسش درباره درست‌بودن منطق است، API؛ اگر درباره تکمیل‌شدن سفر واقعی کاربر است، UI. با رصد زمان اجرا و نرخ فِلِیک در CI، مجموعه تست را پیوسته بهینه کنید تا هم بازخورد سریع بماند و هم اطمینان عملی بالا برود.

#APITesting #BrowserAutomation #TestAutomation #EndToEndTesting #TestingPyramid #QA #CICD #SoftwareTesting

🟣لینک مقاله:
https://cur.at/Efk7ahy?m=web


👑 @software_Labdon
👍1
🔵 عنوان مقاله
How We Utilize AI Agents in Our Testing and Quality Processes

🟢 خلاصه مقاله:
این مقاله با روایت Utku Kılınçcı چهار کاربرد عملی از به‌کارگیری AI agents در تست و تضمین کیفیت را توضیح می‌دهد: ۱) تبدیل نیازمندی‌ها به تست‌های قابل اجرا و به‌روزرسانی مداوم سبد تست با تغییرات مشخصات، ۲) نقش همکار اکتشافی برای کشف سناریوهای مرزی، ثبت شواهد و بازتولید مشکل، ۳) تحلیل و اولویت‌بندی باگ‌ها از طریق خلاصه‌سازی لاگ‌ها، خوشه‌بندی خطاها و ارائه سرنخ‌های ریشه‌یابی، و ۴) بهبود پایداری رگرسیون و درگاه‌های کیفی CI با شناسایی تست‌های flaky، پیشنهاد خوددرمانی و بهینه‌سازی پایپ‌لاین. در همه موارد، نظارت انسانی، رعایت حریم داده و سنجش نتایج (پوشش، MTTR، روند flakiness و زمان چرخه) ضروری است. نتیجه: پذیرش تدریجی AI agents روی مسائل واقعی، سرعت، پایداری و پوشش تست را به‌طور ملموس افزایش می‌دهد بی‌آنکه مالکیت کیفیت را تضعیف کند.

#SoftwareTesting #AIagents #QualityAssurance #TestAutomation #BugTriage #ContinuousIntegration #SoftwareQuality #DevOps

🟣لینک مقاله:
https://cur.at/qRpZzn9?m=web


👑 @software_Labdon