🔵 عنوان مقاله
Software Testing with AI And AI Agents
🟢 خلاصه مقاله:
**این ارائه یک دمو یکساعته و کاربردی از سوی Karthik K.K. است که نشان میدهد چگونه میتوان AI و AI Agents را در مراحل مختلف تست نرمافزار بهکار گرفت. تمرکز اصلی بر سرعتبخشیدن به تولید تست، افزایش پوشش، کاهش نگهداری، و استفاده از عاملهای هوشمند برای تست اکتشافی و UI است. همچنین به تولید دادههای تست، ایجاد سناریوهای مرزی و منفی، پایدارسازی تستها هنگام تغییرات UI/API، رفع خطا و مدیریت flaky tests در CI/CD میپردازد. نکات کلیدی شامل مهار خروجیها با ساختاردهی و گاردریلها، انتخاب مدل با توجه به هزینه و تأخیر، ملاحظات حریم خصوصی، و ارزیابی و اعتمادسازی با دادههای معیار است. نتیجه، نقشهراهی عملی برای تقویت فرآیندهای موجود تست توسط AI—بدون جایگزینکردن آنها—و حفظ کیفیت و کنترل است.
#SoftwareTesting #AIinTesting #AIAgents #QualityEngineering #TestAutomation #LLM #CICD
🟣لینک مقاله:
https://cur.at/DDxkXyi?m=web
➖➖➖➖➖➖➖➖
👑 @software_Labdon
Software Testing with AI And AI Agents
🟢 خلاصه مقاله:
**این ارائه یک دمو یکساعته و کاربردی از سوی Karthik K.K. است که نشان میدهد چگونه میتوان AI و AI Agents را در مراحل مختلف تست نرمافزار بهکار گرفت. تمرکز اصلی بر سرعتبخشیدن به تولید تست، افزایش پوشش، کاهش نگهداری، و استفاده از عاملهای هوشمند برای تست اکتشافی و UI است. همچنین به تولید دادههای تست، ایجاد سناریوهای مرزی و منفی، پایدارسازی تستها هنگام تغییرات UI/API، رفع خطا و مدیریت flaky tests در CI/CD میپردازد. نکات کلیدی شامل مهار خروجیها با ساختاردهی و گاردریلها، انتخاب مدل با توجه به هزینه و تأخیر، ملاحظات حریم خصوصی، و ارزیابی و اعتمادسازی با دادههای معیار است. نتیجه، نقشهراهی عملی برای تقویت فرآیندهای موجود تست توسط AI—بدون جایگزینکردن آنها—و حفظ کیفیت و کنترل است.
#SoftwareTesting #AIinTesting #AIAgents #QualityEngineering #TestAutomation #LLM #CICD
🟣لینک مقاله:
https://cur.at/DDxkXyi?m=web
➖➖➖➖➖➖➖➖
👑 @software_Labdon
YouTube
Software Testing with AI And AI Agents
🚀 Going LIVE: Software Testing with AI and AI Agents
Join me this Friday, September 19th for an exciting YouTube live session where we'll dive deep into the intersection of Software Testing and Artificial Intelligence!
📅 Session Details:
🕘 Time: 9:00 PM…
Join me this Friday, September 19th for an exciting YouTube live session where we'll dive deep into the intersection of Software Testing and Artificial Intelligence!
📅 Session Details:
🕘 Time: 9:00 PM…
❤1
🔵 عنوان مقاله
The Day I Became an AI "Babysitter" (And Why I'm Not Ashamed of It)
🟢 خلاصه مقاله:
** این مقاله از Santhosh Siddegowda نشان میدهد بهکارگیری AI در تست بهجای جایگزینی کامل، به معنای «نظارت هوشمندانه» است. او توضیح میدهد چگونه کیسهای کلاسیک QA به جریانهای AI-assisted تبدیل میشوند: بازنویسی بر پایه قصد کاربر و پرامپت، تعریف گاردریلها و اوراکلهای تست، و افزودن بازبینی Human-in-the-Loop برای مهار ناپایداری و خطاهای مدل. نویسنده بر عملیاتپذیری تأکید میکند—نسخهبندی پرامپتها، لاگبرداری و ارزیابی مداوم کیفیت—و نتیجه میگیرد که هرچند AI سرعت و پوشش تست را افزایش میدهد، موفقیت به سنجشپذیری، محرمانگی داده، معیارهای پذیرش روشن و نقش فعال انسان وابسته است. جمعبندی او: با موارد مناسب شروع کنید، گاردریل و اوراکل شفاف بسازید، اثر را اندازهگیری کنید و قضاوت انسانی را در مرکز نگه دارید؛ «AI babysitting» رویکردی مسئولانه برای قابلاعتماد کردن AI در QA است.
#AIinTesting #QA #TestAutomation #LLM #HumanInTheLoop #PromptEngineering #SoftwareQuality
🟣لینک مقاله:
https://cur.at/PnnqBWN?m=web
➖➖➖➖➖➖➖➖
👑 @software_Labdon
The Day I Became an AI "Babysitter" (And Why I'm Not Ashamed of It)
🟢 خلاصه مقاله:
** این مقاله از Santhosh Siddegowda نشان میدهد بهکارگیری AI در تست بهجای جایگزینی کامل، به معنای «نظارت هوشمندانه» است. او توضیح میدهد چگونه کیسهای کلاسیک QA به جریانهای AI-assisted تبدیل میشوند: بازنویسی بر پایه قصد کاربر و پرامپت، تعریف گاردریلها و اوراکلهای تست، و افزودن بازبینی Human-in-the-Loop برای مهار ناپایداری و خطاهای مدل. نویسنده بر عملیاتپذیری تأکید میکند—نسخهبندی پرامپتها، لاگبرداری و ارزیابی مداوم کیفیت—و نتیجه میگیرد که هرچند AI سرعت و پوشش تست را افزایش میدهد، موفقیت به سنجشپذیری، محرمانگی داده، معیارهای پذیرش روشن و نقش فعال انسان وابسته است. جمعبندی او: با موارد مناسب شروع کنید، گاردریل و اوراکل شفاف بسازید، اثر را اندازهگیری کنید و قضاوت انسانی را در مرکز نگه دارید؛ «AI babysitting» رویکردی مسئولانه برای قابلاعتماد کردن AI در QA است.
#AIinTesting #QA #TestAutomation #LLM #HumanInTheLoop #PromptEngineering #SoftwareQuality
🟣لینک مقاله:
https://cur.at/PnnqBWN?m=web
➖➖➖➖➖➖➖➖
👑 @software_Labdon
Santhoshsiddegowda
The Day I Became an AI "Babysitter" (And Why I'm Not Ashamed of It)
How helping transform traditional QA test cases into AI-assisted ones taught me that the future of testing isn't about replacing humans—it's about humans and AI working together
🔵 عنوان مقاله
Intelligent QA Orchestration with Large Language Models — A modern approach to Quality Assurance
🟢 خلاصه مقاله:
**
این رویکرد با تکیه بر Large Language Models (LLMs) پیشنهاد میکند که از یک لایه ارکستریشن هوشمند برای پیوند دادن نیازمندیها، کد، تلهمتری و ابزارهای موجود استفاده شود تا تستها بهصورت هوشمند و تا حدی خودمختار تولید، اولویتبندی و نگهداری شوند. در این مدل، عاملهای AI کارهایی مانند آمادهسازی محیط، دادهگذاری، اجرای تست، عیبیابی و ثبت خودکار باگ را هماهنگ میکنند و با اتصال به CI/CD و ابزارهای رهگیری، پوشش و ریسک را بهصورت پیوسته بهبود میدهند. طرح پیشنهادی بر معماری مرجع با کانکتورها، پایگاه دانش مشترک و ریلهای حاکمیتی تمرکز دارد و بر ارزیابی خروجیهای AI، human-in-the-loop، بازتولیدپذیری و حفظ حریم داده تأکید میکند. چالشهایی مانند هالوسینیشن، تعیینپذیری، هزینه و امنیت با تکیه بر گراند کردن مدل در منابع معتبر، خروجیهای ساختاریافته و سنجش ROI مدیریت میشوند. بهگفته Sam Treweek مسیر عملی از موارد استفاده محدود مانند انتخاب رگرسیون هوشمند، تشخیص تستهای flaky و نگهداری خودترمیمکننده آغاز میشود و با بلوغ ابزارها و حاکمیت گسترش مییابد.
#QA #SoftwareTesting #LLM #AIinTesting #TestAutomation #QualityEngineering #CICD
🟣لینک مقاله:
https://cur.at/ONc5Qkn?m=web
➖➖➖➖➖➖➖➖
👑 @software_Labdon
Intelligent QA Orchestration with Large Language Models — A modern approach to Quality Assurance
🟢 خلاصه مقاله:
**
این رویکرد با تکیه بر Large Language Models (LLMs) پیشنهاد میکند که از یک لایه ارکستریشن هوشمند برای پیوند دادن نیازمندیها، کد، تلهمتری و ابزارهای موجود استفاده شود تا تستها بهصورت هوشمند و تا حدی خودمختار تولید، اولویتبندی و نگهداری شوند. در این مدل، عاملهای AI کارهایی مانند آمادهسازی محیط، دادهگذاری، اجرای تست، عیبیابی و ثبت خودکار باگ را هماهنگ میکنند و با اتصال به CI/CD و ابزارهای رهگیری، پوشش و ریسک را بهصورت پیوسته بهبود میدهند. طرح پیشنهادی بر معماری مرجع با کانکتورها، پایگاه دانش مشترک و ریلهای حاکمیتی تمرکز دارد و بر ارزیابی خروجیهای AI، human-in-the-loop، بازتولیدپذیری و حفظ حریم داده تأکید میکند. چالشهایی مانند هالوسینیشن، تعیینپذیری، هزینه و امنیت با تکیه بر گراند کردن مدل در منابع معتبر، خروجیهای ساختاریافته و سنجش ROI مدیریت میشوند. بهگفته Sam Treweek مسیر عملی از موارد استفاده محدود مانند انتخاب رگرسیون هوشمند، تشخیص تستهای flaky و نگهداری خودترمیمکننده آغاز میشود و با بلوغ ابزارها و حاکمیت گسترش مییابد.
#QA #SoftwareTesting #LLM #AIinTesting #TestAutomation #QualityEngineering #CICD
🟣لینک مقاله:
https://cur.at/ONc5Qkn?m=web
➖➖➖➖➖➖➖➖
👑 @software_Labdon
Medium
Intelligent QA Orchestration with Large Language Models — A modern approach to Quality Assurance
When I first heard about the power of RAGs (Retrieval-Augmented Generation) and how they can be used to build models based on a specific…