VIRSUN
15.6K subscribers
360 photos
216 videos
2 files
220 links
📥 در کانال @rss_ai_ir هر روز: 🔹 جدیدترین خبرهای AI و فناوری
🔹 کانال توسط اساتید هوش مصنوعی مدیریت میشود
🗯اولویت ما هوش مصنوعی در صنعت میباشد اما نیم نگاهی به موارد دیگر در این زمینه داریم

ارتباط با ادمین 1:
@Ad1_rss_ai_ir
Download Telegram
🧠💻 آیا سخت‌افزار در نتایج شبکه‌های عصبی تفاوت ایجاد می‌کند؟

بسیاری تصور می‌کنند خروجی مدل‌های هوش مصنوعی فقط به داده و معماری وابسته است؛ اما حقیقت این است که نوع سخت‌افزار نیز می‌تواند نقش کلیدی در دقت، سرعت، و حتی انصاف الگوریتم ایفا کند.

🔸 سخت‌افزارهای ویژه مثل TPU و NPU: معماری‌هایی مانند TPU (Google) و NPU با دقت پایین‌تر (مثل INT8)، باعث افزایش سرعت پردازش و کاهش مصرف انرژی می‌شوند و برای مدل‌های سنگین مانند ترنسفورمرها و GPT بسیار بهینه هستند.

🔸 تفاوت GPU و CPU: آموزش شبکه‌های عصبی روی GPU گاهی تا ۱۰۰ برابر سریع‌تر از CPU است. ماجرای معروف AlexNet این حقیقت را برای همیشه در تاریخ یادگیری عمیق ثبت کرده است.

🔸 نویز محاسباتی و عدم‌قطعیت‌ها: جالب است بدانید برخی نویزهای کوچک محاسباتی روی GPU (بر خلاف CPU) می‌توانند گاهی حتی باعث بهبود دقت مدل‌ها شوند! البته برخی از این اثرات ممکن است ناشی از اشکالات نرم‌افزاری در فریم‌ورک‌ها باشد.

🔸 تأثیر بر عدالت الگوریتمی (Fairness): مطالعاتی نشان داده‌اند که حتی نوع GPU انتخابی می‌تواند در عملکرد مدل نسبت به گروه‌های اجتماعی مختلف اثر تبعیض‌آمیز یا ناعادلانه بگذارد!

🔸 مصرف انرژی و انتخاب پلتفرم: هر نوع مدل (CNN, RNN, Transformer) نیاز به سخت‌افزار مناسب خود دارد. در دستگاه‌های موبایل، NPU با مصرف پایین بهترین گزینه است.

📎 مطالعه پیشنهادی: arxiv.org/abs/2312.03886 – اثر انتخاب سخت‌افزار بر عدالت مدل‌ها
arxiv.org/abs/1907.10701 – مقایسه CPU, GPU, TPU
Tom’s Hardware – حمله خطرناک GPUHammer به دقت مدل‌ها


——
@rss_ai_ir
#هوش_مصنوعی #AI_Hardware #GPU #TPU #NeuralNetwork #امنیت #fairness
👍2🔥1👏1