VIRSUN
15.7K subscribers
350 photos
210 videos
2 files
215 links
📥 در کانال @rss_ai_ir هر روز: 🔹 جدیدترین خبرهای AI و فناوری
🔹 کانال توسط اساتید هوش مصنوعی مدیریت میشود
🗯اولویت ما هوش مصنوعی در صنعت میباشد اما نیم نگاهی به موارد دیگر در این زمینه داریم

ارتباط با ادمین 1:
@Ad1_rss_ai_ir
Download Telegram
تیم MetaAI موفق شد در رقابت بین‌المللی Algonauts 2025 مقام اول را کسب کند 🏆🧠 — این مسابقه بزرگ‌ترین چالش جهانی در زمینه مدل‌سازی واکنش مغز انسان است.

---

🎯 هدف رقابت

ساخت مدلی که بتواند پاسخ fMRI مغز را هنگام تماشای فیلم‌های چندرسانه‌ای (تصویر، صدا و متن) پیش‌بینی کند — یعنی شبیه‌سازی دقیق واکنش مغز به ترکیب پیچیده‌ای از ورودی‌های حسی.

---

🛠 راهکار MetaAI — مدل TRIBE (Trimodal Brain Encoder)

🟡 مدل سبک با تنها ۱ میلیارد پارامتر و اولین معماری عصبی اختصاصی برای مدل‌سازی fMRI.
🖼 انکودر جداگانه برای هر مدالیته:

* متن → Llama-3.2-3B
* ویدئو → Video-JEPA 2
* صدا → Wav2Vec2-BERT-2.0
* همه امبدینگ‌ها به نرخ ۲ هرتز همگام می‌شوند تا با fMRI هماهنگ شوند.
🧩 بخش مرکزی: ترنسفورمر ۸ لایه برای پردازش توالی امبدینگ‌ها. خروجی آن به توالی fMRI در بازه زمانی مورد نظر نگاشت می‌شود، شامل ۱۰۰۰ پارسل مغزی (تمام نواحی مغز).

---

📊 نتایج رکوردشکن

* ضریب همبستگی میانگین بین پیش‌بینی و داده واقعی: ۰.۲۲ (SOTA معمولاً ≤ ۰.۲).
* برای برخی شرکت‌کنندگان: بیش از ۰.۳.
* مدل توانایی خوبی در ژنرالایز روی داده‌های خارج از توزیع دارد.
* نمودارها نشان می‌دهند که با داده‌های بیشتر، دقت بالاتری قابل دستیابی است.

---

💶 جایزه قهرمانی: ۹۰۰۰ یورو
📄 [مقاله](https://arxiv.org/abs/2507.22229) | 💻 [کد](https://github.com/facebookresearch/algonauts-2025)

#هوش_مصنوعی 🤖 #NeuroAI 🧠 #MetaAI 🏢 #fMRI 📈 #ترنسفورمر 🕸 #بینایی_ماشین 👁 #پردازش_صوت 🔊
🔥16👍13🎉138😁6
This media is not supported in your browser
VIEW IN TELEGRAM
🧠 در دنیای بینایی کامپیوتر: با مدل Segment Anything یا SAM آشنا شوید!

شرکت متا (فیسبوک سابق) از یک مدل هوش مصنوعی انقلابی به نام Segment Anything یا به اختصار SAM رونمایی کرده بود در 2 سال گذشته که درک ماشین از تصاویر را برای همیشه تغییر می‌دهد.

🤔 خب، Segment Anything دقیقاً چی کار می‌کنه؟

به زبان ساده، SAM می‌تونه *هر چیزی* رو در *هر عکسی* با دقت فوق‌العاده‌ای تشخیص بده و از بقیه تصویر جدا کنه (یا به اصطلاح فنی، "Segment" کنه).

تصور کنید ابزار Magic Wand فتوشاپ رو دارید، اما این ابزار به جای پیکسل‌های مشابه، مفهوم «شیء» رو درک می‌کنه و نیازی به هیچ تنظیم دستی نداره! فقط کافیه بهش اشاره کنید.

---

🤯 چرا SAM اینقدر مهمه و یک جهش بزرگ محسوب می‌شه؟

دلیل اصلی، قابلیت "Zero-Shot" این مدله.

تا قبل از این، مدل‌های هوش مصنوعی باید برای تشخیص اشیاء خاص (مثلاً فقط گربه، ماشین یا انسان) به صورت جداگانه و با هزاران عکس برچسب‌خورده آموزش می‌دیدن. اما SAM یک «مدل پایه» (Foundation Model) برای بخش‌بندی تصویره. یعنی بدون آموزش قبلی روی یک شیء خاص، می‌تونه هر آبجکتی رو در تصویر شناسایی کنه.

این مدل مثل GPT-3 برای متن عمل می‌کنه؛ همانطور که GPT-3 مفهوم کلمات و جملات رو درک می‌کنه، SAM مفهوم اشیاء و ساختار بصری رو درک می‌کنه.

---

🖼 چطور با SAM کار می‌کنیم؟ (Promptable Segmentation)

شما می‌تونید به روش‌های مختلفی به مدل بگید که کدوم شیء رو می‌خواید جدا کنه:

🖱 کلیک کردن روی یک نقطه: روی هر قسمتی از یک شیء کلیک کنید، SAM به طور هوشمند کل اون شیء رو براتون ماسک (Mask) می‌کنه.

📦 کشیدن یک کادر (Box) دور شیء: یک کادر ساده دور یک شیء بکشید تا مدل اون رو به دقت براتون جدا کنه.

✍️ (در آینده) توصیف متنی: این قابلیت هنوز در حال توسعه است، اما در آینده می‌تونید با نوشتن یک متن (مثلاً "اون گربه که روی مبل خوابیده")، شیء مورد نظر رو انتخاب کنید.

وقتی شما یک Prompt (مثل کلیک یا کادر) به مدل می‌دید، SAM در لحظه چندین ماسک معتبر و دقیق رو به شما پیشنهاد می‌ده تا بهترین رو انتخاب کنید.

---

🚀 ویژگی‌های کلیدی SAM:

توانایی Zero-Shot: بدون نیاز به آموزش مجدد، اشیاء جدید رو شناسایی می‌کنه.
عملکرد بر اساس Prompt: کاملاً تعاملیه و از ورودی کاربر برای تشخیص استفاده می‌کنه.
تولید ماسک‌های باکیفیت: لبه‌های اشیاء رو با جزئیات و دقت بسیار بالایی مشخص می‌کنه.
آموزش دیده روی دیتاست عظیم: متا برای آموزش این مدل، بزرگترین دیتاست تاریخ برای بخش‌بندی تصویر به نام SA-1B رو ایجاد کرده که شامل ۱.۱ میلیارد ماسک از ۱۱ میلیون تصویره!

---

💡 کاربردهای بالقوه:

* ابزارهای خلاقانه: ویرایش حرفه‌ای عکس و ویدیو با چند کلیک ساده (مثل حذف پس‌زمینه).
* واقعیت افزوده (AR) و مجازی (VR): قرار دادن اشیاء مجازی در دنیای واقعی با درک کامل از محیط.
* تحقیقات علمی: تحلیل تصاویر پزشکی (مثل شناسایی تومورها) یا تصاویر ماهواره‌ای.
* تجارت الکترونیک: جداسازی خودکار محصولات از پس‌زمینه برای نمایش در فروشگاه‌های آنلاین.
* خودکارسازی برچسب‌زنی داده: کمک به آموزش مدل‌های هوش مصنوعی دیگر با سرعت بسیار بالاتر.

---

🔗 خودتون امتحان کنید!

متا دموی آنلاین این مدل رو برای استفاده عمومی منتشر کرده. حتماً امتحانش کنید تا قدرت شگفت‌انگیزش رو ببینید:

🌐 لینک دموی آنلاین:
[https://segment-anything.com/demo]

👨‍💻 برای متخصصین و توسعه‌دهندگان:
این پروژه به صورت اپن سورس منتشر شده و می‌تونید کدها و مدل رو از گیت‌هاب دانلود کنید:

لینک گیت‌هاب:
[https://github.com/facebookresearch/segment-anything]

📄 مقاله پژوهشی:
[https://ai.facebook.com/research/publications/segment-anything/]

#هوش_مصنوعی #متا #فیسبوک #بینایی_کامپیوتر #پردازش_تصویر #SAM #SegmentAnything #AI #MetaAI #ComputerVision #FoundationModel
@rss_ai_ir
👍7🔥7😁5🎉54🥰3👏3🙏1
VIRSUN
🧠 در دنیای بینایی کامپیوتر: با مدل Segment Anything یا SAM آشنا شوید! شرکت متا (فیسبوک سابق) از یک مدل هوش مصنوعی انقلابی به نام Segment Anything یا به اختصار SAM رونمایی کرده بود در 2 سال گذشته که درک ماشین از تصاویر را برای همیشه تغییر می‌دهد. 🤔 خب،…
Media is too big
VIEW IN TELEGRAM
📌 Segment Anything Model (SAM) – توضیح شبکه و آموزش استفاده

♨️به درخواست دوستان، یک ویدیو قدیمی ولی کاربردی از مدل Segment Anything (SAM) قرار داده‌ایم. هرچند این ویدیو مربوط به سال‌های قبل است، اما همچنان برای آشنایی با ساختار شبکه و گرفتن خروجی از SAM بسیار مفید خواهد بود.

#هوش_مصنوعی #متا #فیسبوک #بینایی_کامپیوتر #پردازش_تصویر #SAM #SegmentAnything #AI #MetaAI #ComputerVision #FoundationModel
@rss_ai_ir
🎉12🔥1110👍8👏8😁7🥰1🙏1