VIRSUN
15.8K subscribers
337 photos
203 videos
2 files
206 links
📥 در کانال @rss_ai_ir هر روز: 🔹 جدیدترین خبرهای AI و فناوری
🔹 کانال توسط اساتید هوش مصنوعی مدیریت میشود
🗯اولویت ما هوش مصنوعی در صنعت میباشد اما نیم نگاهی به موارد دیگر در این زمینه داریم

ارتباط با ادمین 1:
@Ad1_rss_ai_ir
Download Telegram
Media is too big
VIEW IN TELEGRAM
🎥 بررسی تخصصی ویدیوی
Score-based Diffusion Models | Generative AI Animated


---

مدل‌های انتشار (Diffusion) به یکی از دقیق‌ترین و پیشرفته‌ترین روش‌ها در تولید داده‌های مصنوعی با کیفیت بالا تبدیل شده‌اند. این ویدیو با زبان انیمیشنی مفاهیم مدل‌های Score-based Diffusion را به‌شکل حرفه‌ای و قابل فهم نمایش می‌دهد 🚀

---

🔍 مهم‌ترین نکات این مدل‌ها:
🧠 فرایند یادگیری با افزودن نویز به داده‌ها و سپس حذف نویز
🎯 کنترل دقیق‌تر نسبت به GAN در تولید محتوا
🖼 کاربرد در تولید تصویر، بازسازی داده، طراحی هوشمند

---

⚙️ مزایا:
✔️ کیفیت بالا در خروجی
✔️ پایداری بهتر نسبت به GAN
✔️ مناسب برای پروژه‌های دقیق و خلاقانه

⚠️ محدودیت‌ها:
🔸 زمان آموزش زیاد
🔸 نیازمند منابع سخت‌افزاری بالا
🔸 حساس به تنظیمات مدل

---

💡 اگر به Generative AI علاقه‌مند هستی یا پروژه‌ای در زمینه بازسازی تصویر، طراحی صنعتی یا تولید داده مصنوعی داری، این مدل‌ها یک انتخاب آینده‌دار و بسیار کاربردی هستن.
ویدیوی کامل رو از این لینک ببین:
📺 https://www.youtube.com/watch?v=lUljxdkolK8

♨️زیرنویس فارسی
---

#هوش_مصنوعی #یادگیری_عمیق #DiffusionModel #ScoreBased #GenerativeAI #مدل_انتشار #OpenAI #AIResearch #پردازش_تصویر #تولید_داده

📡 کانال تخصصی ما:
🔗 https://t.me/rss_ai_ir
2🔥1🙏1
Media is too big
VIEW IN TELEGRAM
🧠 مدل‌های انتشار (Diffusion Models) – با تمرکز بر DDPM

در دنیای مدل‌های مولد، روش‌های مبتنی بر «انتشار» به‌عنوان یکی از دقیق‌ترین و قابل‌کنترل‌ترین رویکردها شناخته می‌شوند. به‌ویژه DDPM (مدل احتمالاتی انتشار کاهش نویز) که ساختار ساده اما بسیار قدرتمندی دارد، پایه‌گذار بسیاری از مدل‌های موفق مانند Stable Diffusion است.

---

🔄 منطق مدل چگونه کار می‌کند؟

مدل DDPM ابتدا تصویر واقعی را طی چند مرحله با نویز مخدوش می‌کند تا به نویز کامل برسد. سپس در مسیر معکوس، گام‌به‌گام تلاش می‌کند تا آن نویز را حذف کرده و تصویر اصلی را بازسازی کند. این فرآیند آموزش باعث می‌شود مدل یاد بگیرد که از یک نویز خالص، تصویری دقیق و واقعی تولید کند.

در واقع، این مدل نه «یاد می‌گیرد چه چیزی بسازد»، بلکه «یاد می‌گیرد چگونه نویز را حذف کند».

---

⚙️ چرا DDPM اهمیت دارد؟

فرآیند آموزش پایدارتر از GAN است و مدل دچار نوسانات یادگیری نمی‌شود.
در تولید محتواهای تصویری، قابلیت کنترل و هدایت بیشتری در اختیار کاربر قرار می‌دهد.
برخلاف مدل‌های تصادفی ساده، خروجی‌هایی با جزئیات بالا و بافت دقیق ارائه می‌دهد.
امکان شرطی‌سازی وجود دارد؛ یعنی می‌توان تصویر خاصی را بر اساس متن، دسته‌بندی یا اطلاعات زمینه‌ای تولید کرد.

---

🧪 کاربردهای صنعتی و علمی


🔸 تولید تصویر از روی متن (Text-to-Image Generation)
🔸 بازسازی تصاویر آسیب‌دیده یا نویزی (Image Denoising)
🔸 ساخت انیمیشن و ویدئوهای تعاملی
🔸 تولید داده برای حوزه‌های پزشکی، رادار، سنجش‌ازدور و طراحی صنعتی
🔸 جایگزین‌سازی قطعات گمشده در تصاویر قدیمی یا ناقص

---

📌 جمع‌بندی

مدل‌های انتشار، انقلابی در هوش مصنوعی مولد به‌وجود آورده‌اند. DDPM به‌عنوان ساده‌ترین و پایه‌ای‌ترین نوع این مدل‌ها، درک مفهومی بسیار شفافی دارد و درعین‌حال قدرت بالایی در تولید تصاویر دقیق و کنترل‌پذیر ارائه می‌دهد.

در آینده، به‌کمک نسخه‌های سریع‌تر مانند DDIM یا مدل‌های ترکیبی با ترنسفورمر، سرعت و دقت این نسل از معماری‌ها حتی بیشتر خواهد شد.

---

📎 اگر دوست داری پیاده‌سازی عملی این مدل‌ها با PyTorch یا HuggingFace را هم بررسی کنیم، کافیه توی کامنت بگی تا آموزش گام‌به‌گامش رو هم آماده کنیم.

@rss_ai_ir
#هوش_مصنوعی #مدل_مولد #مدل_انتشار #پردازش_تصویر #یادگیری_عمیق #AI #DiffusionModels #DDPM #StableDiffusion #GenerativeAI
22👍18🔥16🥰16😁16👏15🎉9🙏1
🧩 مدل OmniPart: نسل جدید تولید سه‌بعدی با آگاهی از اجزای شیء

پژوهشگران در مدل OmniPart روشی دو‌مرحله‌ای برای ساخت اشیاء سه‌بعدی قابل‌ویرایش از روی تصاویر و ماسک‌های دوبعدی ارائه کرده‌اند.

🔹 ویژگی‌های کلیدی:

1. جدا‌سازی معنایی قوی بین اجزاء (Semantic Decoupling)
2. انسجام ساختاری بالا بین کل مدل (Structural Cohesion)
3. امکان کنترل و ویرایش بخش‌های جداگانه مدل پس از تولید



🔹 روش کار:

مرحله اول: یک ترنسفورمر خودبازگشتی (Autoregressive Transformer) چیدمان سه‌بعدی اجزاء را به صورت توالی باکس‌ها، بر اساس ماسک‌های ۲بعدی، طراحی می‌کند.

مرحله دوم: یک ماژول سنتز مکانی (Spatially-Conditioned Synthesis) — آموزش‌دیده از یک مدل تولیدی پیش‌فرض — همه اجزاء را به طور همزمان در این چیدمان می‌سازد.


🔹 نتایج:

دقت F1 Score = 0.74 در سطح جزء (با آستانه Chamfer Distance < 0.1)

عملکرد بهتر نسبت به تمام مدل‌های موجود در تولید سه‌بعدی مبتنی بر اجزاء


🔹 کاربردها:

♻️ویرایش جزئی مدل‌های سه‌بعدی
♻️انیمیشن‌سازی بخشی
♻️اختصاص متریال به قسمت‌های خاص در سیستم‌های تعاملی


📄 مطالعه کامل: arXiv
💻 کد و مدل: HuggingFace

#3D #ComputerVision #GenerativeAI
@rss_ai_ir
👍14😁13🥰10👏10🎉9🔥83