VIRSUN
15.8K subscribers
335 photos
200 videos
2 files
205 links
📥 در کانال @rss_ai_ir هر روز: 🔹 جدیدترین خبرهای AI و فناوری
🔹 کانال توسط اساتید هوش مصنوعی مدیریت میشود
🗯اولویت ما هوش مصنوعی در صنعت میباشد اما نیم نگاهی به موارد دیگر در این زمینه داریم

ارتباط با ادمین 1:
@Ad1_rss_ai_ir
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
🧠 جادوی کانولوشن 1x1 در شبکه‌های عصبی پیچشی (CNN)

در نگاه اول، یک کانولوشن 1x1 شاید بی‌فایده به نظر برسه. مگه نه؟ فقط یک فیلتر با ابعاد 1 در 1 که روی تصویر حرکت می‌کنه... این چه کاری انجام میده؟ 🤔

اما راز اینجاست: کانولوشن 1x1 در عمق (تعداد کانال‌ها) عمل می‌کنه! 🔥

تصور کنید یک تنسور ورودی با ابعاد H x W x C_in دارید (ارتفاع، عرض، تعداد کانال ورودی). فیلتر 1x1 ما در واقع ابعادی برابر 1 x 1 x C_in داره. این فیلتر در هر موقعیت (pixel) یک dot product بین C_in کانال ورودی و وزن‌های خودش انجام میده. در نتیجه، اطلاعات تمام کانال‌ها رو در یک نقطه ترکیب می‌کنه!

به عبارت ساده‌تر، این لایه مثل یک شبکه عصبی کاملاً متصل (Fully Connected) کوچک عمل می‌کنه که روی هر پیکسل به صورت جداگانه و در راستای عمق کانال‌ها اعمال می‌شه.

خب، کاربرد اصلیش چیه؟

1.  کاهش ابعاد (Dimensionality Reduction) 📉
    مهم‌ترین و مشهورترین کاربرد! با استفاده از $N$ فیلتر 1x1، می‌تونیم تعداد کانال‌ها رو از $C_{in}$ به $N$ کاهش بدیم (یا افزایش، اما معمولاً برای کاهش استفاده می‌شه). این کار قبل از اعمال کانولوشن‌های پرهزینه‌تر مثل 3x3 یا 5x5، باعث کاهش شدید حجم محاسبات و پارامترها می‌شه بدون اینکه ابعاد مکانی (ارتفاع و عرض) تغییر کنه. این تکنیک قلب ماژول‌های Inception در معماری GoogLeNet است.

2.  افزودن غیرخطی بودن (Adding Non-linearity) 🧠
    بعد از هر لایه کانولوشن (حتی 1x1)، یک تابع فعال‌سازی مثل ReLU قرار می‌گیره. با اضافه کردن یک لایه کانولوشن 1x1 و یک ReLU بعد از آن، می‌تونیم یک لایه غیرخطی جدید به شبکه اضافه کنیم. این کار به مدل اجازه میده توابع پیچیده‌تری رو یاد بگیره، در حالی که میدان دید (Receptive Field) ثابت باقی می‌مونه.

3.  پیاده‌سازی مفهوم "Network in Network" 💡
    معماری "Network in Network" (NiN) ایده استفاده از میکرو-شبکه‌های عصبی به جای فیلترهای خطی ساده رو مطرح کرد. کانولوشن 1x1 دقیقاً همین کار رو انجام می‌ده و به عنوان یک پروژکتور بین کانالی عمل می‌کنه و ویژگی‌های پیچیده‌تری رو استخراج می‌کنه.

نتیجه‌گیری:
پس دفعه بعدی که یک کانولوشن 1x1 دیدید، بدونید که این یک ابزار قدرتمند و هوشمندانه برای ساختن شبکه‌های عمیق‌تر و بهینه‌تره، نه یک عملیات ساده و بی‌اهمیت! 🚀

#هوش_مصنوعی #یادگیری_عمیق #شبکه_عصبی #شبکه_عصبی_پیچشی #پردازش_تصویر #دیپ_لرنینگ #کانولوشن
#AI #DeepLearning #CNN #Convolution #ComputerVision #1x1Convolution

@rss_ai_ir
🎉9😁7👍6🔥6🥰64👏3