RG Analitics π’ [PRIVATE CHANNELπ]
@CryptoVIPSignalTA will host Telegram Voice AMA with #PIVX on 29th Nov (4:00 PM UTC ) Submit your questions in the Google Form Mentioned in pinned post on twitter and get a chance to win a reward of 3000 in PIVX. rewards will be distributed equally forβ¦
Join us Today's AMA with $PIVX at 4 PM GMT. Prepare your questions to win a reward of 3000 in $PIVX Tokens ..!
Submit question here :-
https://twitter.com/_PIVX/status/1596507739999682561?t=CHkTyPZ30zSdrYeANQwH-w&s=19
Submit question here :-
https://twitter.com/_PIVX/status/1596507739999682561?t=CHkTyPZ30zSdrYeANQwH-w&s=19
What is Selfish Mining ?
#Selfish mining in Bitcoin is a strategy used by some #miners to increase their chances of earning mining rewards by withholding blocks that they have mined from the rest of the network. By #secretly mining on the next block, they can gain an advantage over other miners and earn more #rewards than their fair share. This can harm the network's security and decentralization, especially if the selfish miner controls a significant share of the #network's hash rate. The Bitcoin network is constantly being improved to prevent selfish mining and maintain its #security and #decentralization.
Let's See a Example of this
Let's say there are three miners on the #Bitcoin network: Miner A, Miner B, and Miner C. Each miner has an equal share of the network's #hash rate, which means they have an equal chance of mining a new #block and earning a reward.
Miner A mines a new block and broadcasts it to the network for verification. Miners B and C receive the #block and start working on the next block. However, before #broadcasting the new block, Miner A decides to #withhold the block and continues mining on the next block in secret.
Meanwhile, Miners B and C continue to work on the next block, #unaware that Miner A has already solved it. When Miner A eventually broadcasts their new block to the network, the other miners see that it has been solved and discard their own work on the next #block. This gives Miner A a head start on the next block, and they are more likely to earn the #reward for that block.
If Miner A continues to withhold blocks and keeps #mining on the next block in secret, they can gain an #advantage over the other miners and earn more rewards than their #fair share. This is known as selfish mining because Miner A is not playing fair and is intentionally withholding information from the network to #gain an unfair advantage.
#Selfish mining in Bitcoin is a strategy used by some #miners to increase their chances of earning mining rewards by withholding blocks that they have mined from the rest of the network. By #secretly mining on the next block, they can gain an advantage over other miners and earn more #rewards than their fair share. This can harm the network's security and decentralization, especially if the selfish miner controls a significant share of the #network's hash rate. The Bitcoin network is constantly being improved to prevent selfish mining and maintain its #security and #decentralization.
Let's See a Example of this
Let's say there are three miners on the #Bitcoin network: Miner A, Miner B, and Miner C. Each miner has an equal share of the network's #hash rate, which means they have an equal chance of mining a new #block and earning a reward.
Miner A mines a new block and broadcasts it to the network for verification. Miners B and C receive the #block and start working on the next block. However, before #broadcasting the new block, Miner A decides to #withhold the block and continues mining on the next block in secret.
Meanwhile, Miners B and C continue to work on the next block, #unaware that Miner A has already solved it. When Miner A eventually broadcasts their new block to the network, the other miners see that it has been solved and discard their own work on the next #block. This gives Miner A a head start on the next block, and they are more likely to earn the #reward for that block.
If Miner A continues to withhold blocks and keeps #mining on the next block in secret, they can gain an #advantage over the other miners and earn more rewards than their #fair share. This is known as selfish mining because Miner A is not playing fair and is intentionally withholding information from the network to #gain an unfair advantage.
What is PoS (Proof of Work) ?
Proof of Stake (#PoS) is a consensus #algorithm used in #blockchain networks as an alternative to Proof of Work (#PoW). It is used to validate transactions and add new #blocks to the blockchain.
In #PoS, #validators or nodes are selected based on the amount of cryptocurrency they hodl or "#stake" in the network. The more cryptocurrency a validator hodls, the higher their chances of being chosen to validate the next block. This is in contrast to PoW, where miners compete to solve complex mathematical problems in order to# validate the next block.
The process of block validation in PoS is called #forging, and the validators who are chosen to forge the next block are responsible for validating #transactions and adding them to the blockchain. Validators are incentivized to act honestly and perform their duties correctly, as they can lose their stake in the #network if they are found to be malicious or negligent.
One of the advantages of #PoS is that it is more #energy-efficient than PoW, as it does not require the use of specialized #hardware to perform the validation process. It also allows for a greater level of #decentralization, as more individuals can participate in the network as validators.
However, #PoS also has its limitations. For example, it can be vulnerable to# attacks if a single entity or group of entities holds a large percentage of the total #cryptocurrency in the network. It also requires a certain level of #trust in the validators, as they have the power to validate transactions and add them to the blockchain.
Proof of Stake (#PoS) is a consensus #algorithm used in #blockchain networks as an alternative to Proof of Work (#PoW). It is used to validate transactions and add new #blocks to the blockchain.
In #PoS, #validators or nodes are selected based on the amount of cryptocurrency they hodl or "#stake" in the network. The more cryptocurrency a validator hodls, the higher their chances of being chosen to validate the next block. This is in contrast to PoW, where miners compete to solve complex mathematical problems in order to# validate the next block.
The process of block validation in PoS is called #forging, and the validators who are chosen to forge the next block are responsible for validating #transactions and adding them to the blockchain. Validators are incentivized to act honestly and perform their duties correctly, as they can lose their stake in the #network if they are found to be malicious or negligent.
One of the advantages of #PoS is that it is more #energy-efficient than PoW, as it does not require the use of specialized #hardware to perform the validation process. It also allows for a greater level of #decentralization, as more individuals can participate in the network as validators.
However, #PoS also has its limitations. For example, it can be vulnerable to# attacks if a single entity or group of entities holds a large percentage of the total #cryptocurrency in the network. It also requires a certain level of #trust in the validators, as they have the power to validate transactions and add them to the blockchain.