Python вопросы с собеседований
25.1K subscribers
541 photos
22 videos
17 files
428 links
Вопросы с собеседований по Python

@workakkk - админ

@machinelearning_interview - вопросы с собесдований по Ml

@pro_python_code - Python

@data_analysis_ml - анализ данных на Python

@itchannels_telegram - 🔥 главное в ит

РКН: clck.ru/3FmrFd
Download Telegram
Forwarded from Machinelearning
🔥Machine learning Interview Questions

Вопросы и ответы с собеседований.

Большая, подборка вопросов и ответов с собеседований по ML, Data Science,Ai, статистике, теории вероятностей python, SQL.

ML
100 вопросов c собесов по машинному обучению 2024
Сборник ответов с собесов по машинному обучению от FAANG, Snapchat, LinkedIn.
Facebook. Вопросы по машинному обучению 2024 год
Google руководство по прохождению собеса в 2024 году
Подготовка к собеседованию по ML: ответы на основные вопросы
14 типичных вопросов с собеседования по ML
Вопросы для собеседования на позицию ML-инженера
Решения вступительных испытаний в ШАД
Решения вступительных испытаний в ШАД архив
AI Interviews at Apple, OpenAI, Bloomberg & JP Morgan – What to Expect
Apple Machine Learning Engineer (MLE) Interview Guide
Junior ML-инженер | Выпуск 1 | Собеседование
Успешное собеседование в Яндекс
Как я проходил собеседования на Machine Learning Engineer
NLP
100 вопросов и ответов для интервью по NLP
Топ-50 вопросов собеседований NLP
Вопросы по NLP 2024 года
Еще 100 NLP вопросов
DS
Материалы для подготовки к интервью data science
Вопросы/ответы DS
100 вопросов для подготовки к собесу Data Science
Временные ряды. Топ 50 вопросов
Python

100 вопросов для подготовки к собесу Python
50 вопросов по PyTorch
45 Вопросов с собеседований Pandas
400 самых популярных вопросов-ответов для Python-разработчика.
100 вопросов видео
LeetCode Pandas
AI
30 вопросов промпт инжинирингу
15 вопросов по LLM и AI
27 Вопросов по Chatgpt
Math
Вопросы с собеседований по статистике
Вопросы по теории вероятности
LeetCode: разные решения с кодом
Top 75 Statistics Interview Questions
40 вопросов по статистике с собеседований на должность Data Scientist
Statistics Interview Questions & Answers for Data Scientists
SQL
Задачи с собеседований SQL

Подборка будет постепенно обновляться, делитесь в комментариях полезными ресурсами, которые стоит сюда добавить.

#interview #вопросыссобесов #ml #ds

@ai_machinelearning_big_data
11👍5🔥4
Forwarded from Machinelearning
🌟 Awesome-list советов по поступлению в аспирантуру и научной работе.

Репозиторий GitHub "advice", в котором содержится обширная коллекция ссылок на ресурсы, предлагающие советы по различным аспектам поступления в аспирантуру, проведения исследований и жизни в аспирантуре, в основном в области информатики, NLP и ML.

Автор репозитория - Shaily Bhatt, аспирант первого года обучения в Институте языковых технологий CMU и бывший сотрудник NLU Group в Google Research (Индия).

Содержание:

Заявки в аспирантуру:

🟢общие советы по заявкам;
🟢советы, специфичные для программ MS;
🟢советы по заявкам на предварительные докторские программы;
🟢советы о том, стоит ли получать докторскую степень;
🟢советы по выбору учебных заведений и научных руководителей.

Исследования:

🟠общие советы по исследованиям;
🟠советы для аспирантов;
🟠идеи для исследований;
🟠советы по написанию работ;
🟠советы по рецензированию;
🟠советы по чтению;
🟠советы по публикации и конференциям;
🟠советы по динамике отношений между научным руководителем и аспирантом;
🟠советы по научно-исследовательским стажировкам;
🟠советы по нетворкингу;
🟠советы по выступлениям и презентациям;
🟠советы по продуктивности;
🟠советы по борьбе с синдромом самозванца;
🟠советы по инструментам для исследований.

В репозитории также есть раздел "Список списков", в котором собраны ссылки на другие полезные ресурсы.


🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Resources #Github #Awesome
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍3🔥1
Forwarded from Machinelearning
✔️ Stability AI выпустила модели ControlNet для Stable Diffusion 3.5 Large.

Stability AI представила 3 модели ControlNet: Blur, Canny и Depth, которые расширяют возможности Stable Diffusion 3.5 Large. Модели доступны для коммерческого и некоммерческого использования под лицензией Stability AI Community License..

Модель Blur предназначена для апскейла изображений до разрешений 8K и 16K. Canny использует карты границ для структурирования генерируемых изображений. Модель Depth использует карты глубины, созданные DepthFM, для управления композицией изображения.

ControlNet для Stable Diffusion 3.5 Large уже доступны на Hugging Face и поддерживаются в Comfy UI.
stability.ai

✔️ IMAX внедряет ИИ для расширения охвата оригинального контента.

Канадская компания, известная своими огромными кинотеатрами и иммерсивными впечатлениями от просмотра фильмов, объявила о партнерстве со стартапом Camb.ai, базирующимся в Дубае, для использования его моделей речевого ИИ для перевода оригинального контента.

Camb.ai предлагает свою модель Boli для перевода речи в текст и Mars для эмуляции речи. Модели доступны через платформу DubStudio, которая поддерживает 140 языков, включая малые языковые группы. IMAX начнет внедрять переводы на основе ИИ поэтапно, начиная с языков с большим объемом данных.
techcrunch.com

✔️ Anthropic добавила функцию пользовательских стилей в Claude AI.

Новая функция Claude - стиль ответов чат-бота. Обновление доступно для всех пользователей Claude AI и даёт возможность настроить стиль общения или выбрать один из предустановленных вариантов, чтобы быстро изменить тон и уровень детализации.

Пользователям предлагается три предустановленных стиля: формальный для «четкого и отточенного» текста, краткий для более коротких и прямых ответов, и пояснительный для образовательных ответов. Пользователи Claude могут создавать собственные стили, загрузив примеры текстов, отражающих их предпочтительный способ общения.
theverge.com

✔️ Google запустила платформу Health AI Developer Foundations (HAI-DEF) для разработки ИИ в здравоохранении.

Health AI Developer Foundations (HAI-DEF) - публичный ресурс, который должен помочь разработчикам в создании и внедрении моделей ИИ для здравоохранения. HAI-DEF предоставляет разработчикам модели, обучающие блокноты Colab и подробную документацию для поддержки каждого этапа разработки ИИ, от исследований до коммерциализации.

В HAI-DEF входят 3 специализированные модели для медицинской визуализации: CXR Foundation для рентгеновских снимков грудной клетки, Derm Foundation для изображений кожи и Path Foundation для цифровой патологии.
developers.google.com

✔️ Cursor получил обновление с автономными агентами.

Cursor выпустила обновление 0,43, которое обеспечивает частичную автоматизацию написания кода с помощью ИИ-агентов, способных самостоятельно перемещаться по контекстам и выполнять операции в терминале. Обновление позволяет ИИ-агентам реагировать на сообщения об ошибках и принимать автономные решения для устранения проблем. В демонстрации, опубликованной в X, Cursor создает полноценное веб-приложение секундомера с использованием HTML, CSS и JavaScript, включая запуск веб-сервера, все это с помощью одной текстовой подсказки.

Cursor остается бесплатным для загрузки и работает с GPT-4, Claude 3.5 Sonnet и Llama, как локально, так и через API. Платная подписка Pro за 20 долларов в месяц открывает доступ к дополнительным функциям, включая новых ИИ-агентов.
changelog.cursor.sh

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍84🔥2
Forwarded from Machinelearning
🌟 PydanticAI: фреймворк для создания AI-агентов на основе Pydantic.

PydanticAI - фреймворк для Python, созданный командой разработчиков Pydantic, который упрощает создание приложений с использованием LLM. Фреймворк имеет простой и интуитивно понятный интерфейс для взаимодействия с LLMs, поддерживающими Async OpenAI (Ollama) и openAI API (ChatGPT, Gemini и Groq), с поддержкой Anthropic в ближайшем будущем.

Основная особенность PydanticAI - система внедрения зависимостей, которая передает данные, соединения и логику в целевую модель. Она упрощает тестирование и оценку агентов и позволяет динамически формировать системные промпты и определять инструменты, доступные LLM.

PydanticAI имеет возможность потоковой обработки ответов с валидацией структурированных данных, позволяя контролировать корректность соответствие данных ожидаемому ответу, тем самым повышая эффективность и интерактивность приложений.

Для отладки и мониторинга работы агентов предусмотрена интеграция с Pydantic Logfire, с которым можно отслеживать запросы к базам данных, анализировать поведение модели и оценивать производительность.

▶️ В документации к проекту доступны примеры применения PydanticAI в сценариях:

🟢Построение Pydantic-модели на основе текстового ввода;
🟢Погодный агент;
🟢Агент поддержки клиентов банка;
🟢Генерация SQL-запросов на основе пользовательского ввода;
🟢RAG-поиск по массиву markdown-документам;
🟢Вывод результатов работы агента в терминале;
🟢Пример проверки потокового структурированного ответа на примере информации о видах китов;
🟢Простой чат-приложение.

⚠️ PydanticAI находится на ранней стадии бета-тестирования.

▶️Установка и простой пример "Hello Word" с Gemini-1.5-flash:

# Install via  PyPI
pip install pydantic-ai

# Set Gemini API key
export GEMINI_API_KEY=your-api-key

# Run example
from pydantic_ai import Agent
agent = Agent(
'gemini-1.5-flash',
system_prompt='Be concise, reply with one sentence.',
)
result = agent.run_sync('Where does "hello world" come from?')
print(result.data)
"""
The first known use of "hello, world" was in a 1974 textbook about the C programming language.
"""


📌Лицензирование: MIT License.


🟡Документация
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Agents #Framework #PydanticAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍107🔥6👎1
🎲 Вероятностные модели и функции потерь. Машинное обучение полный курс. Урок 8

- Видео
- Урок 1 / Урок2 / Урок3 / Урок4 / Урок5 /
- Урок6/ Урок7
- Colab
-Полный курс

@python_job_interview

#ml #math #mlmath #probability #машинноеобучение
2👍2
Forwarded from Machinelearning
💡 Distilabel

Мощный фреймворк Python для создания синтетических данных для AI и не только для этого

Помимо создания синтетических данных, Distilabel помогает организовать сложные конвейеры обработки данных;
эти конвейеры могут содержать любое количество разных шагов.

Позволяет легко синтезировать и оценивать данные с помощью встроенных инструментов. Отлчиный инструмент для улучшении данных и обучении моделей.

Процесс прост:

- Вводим запрос.
- Два LLM генерируют ответы
- LLM-судья оценивает полученные ответы
- Лучший ответ сопоставляется с изначальным вопросов.

И что самое интересное? Все это с открытым исходным кодом. Лицензия позволяет использовать результаты модели для улучшения других моделей.

GitHub
Доки

@ai_machinelearning_big_data


#Distilabel #python #ai #openai #python #ai #syntheticdata #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
10👍2
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
⭐️ Первый Open Source аналог Deep Research от OpenAI.

Реализация ИИ-ресерчера, который непрерывно ищет информацию по запросу пользователя, пока система не убедится, что собрала все необходимые данные.

Для этого он использует несколько сервисов:

- SERPAPI: Для выполнения поиска в Google.
- Jina: Для получения и извлечения содержимого веб-страниц.
- OpenRouter (модель по умолчанию: anthropic/claude-3.5-haiku): Взаимодействует с LLM для генерации поисковых запросов, оценки релевантности страниц и понимания контекста.

🟢 Функции
- Итеративный цикл исследования: Система итеративно уточняет свои поисковые запросы.
- Асинхронная обработка: Поиск, парсинг веб-страниц и оценка контекста - выполняются параллельно для повышения скорости.
- Фильтрация дубликатов: Агрегирует и дедуплицирует ссылки в каждом цикле, проверяя, что одна и та же информация не будет обработана дважды.

Github
Google Colab

@ai_machinelearning_big_data


#opensource #llm #ai #ml #DeepResearcher
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍6🔥2
Forwarded from Machinelearning
⭐️ LLM-Reasoner

Инструмент, который поможет добавить рассждуения в ваши LLM проекты , подобно OpenAI o1 и deepseek R1.

Функции:
🧠 Пошаговые рассуждения: Больше никаких ответов из «черного ящика»! Узнайте, как именно мыслит ваш LLM, по аналогии с O1.
🔄 Прогресс в реальном времени: позволяет наблюдать за ходом рассуждений с помощью плавных анимаций
🎯 Поддержка множества LLM провайдеров: Работает со всеми провайдерами LiteLLM
🎮 Streamlit: Удобный пользовательский интерфейс
🛠️ Поддердка CLI: для тех, кто любит возиться с командной строкой.
📊 Проверка уверенности ответа: Узнайте, насколько уверен ваш LLM в каждом шаге рассуждений.

⭐️ Установка:
pip install llm-reasoner

Пример с кодом:

from llm_reasoner import ReasonChain
import asyncio

async def main():
# Create a chain with your preferred settings
chain = ReasonChain(
model="gpt-4", # Choose your model
min_steps=3, # Minimum reasoning steps
temperature=0.2, # Control creativity
timeout=30.0 # Set your timeout
)

# Watch it think step by step!
async for step in chain.generate_with_metadata("Why is the sky blue?"):
print(f"\nStep {step.number}: {step.title}")
print(f"Thinking Time: {step.thinking_time:.2f}s")
print(f"Confidence: {step.confidence:.2f}")
print(step.content)

asyncio.run(main())


@ai_machinelearning_big_data


#llm #ml #ai #opensource #reasoning
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍3
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
📚 ArXiv Research Agent — отличный помощник для научных исследований.

Агент самостоятельно:
• Найдёт релевантные статьи с arXiv, bioRxiv, medRxiv и Semantic Scholar
• Проведёт полноценный обзор и поиск нужных материалов
• Покажет, что упущено, и предложит, что добавить
• Даст инсайты и цитаты из миллионов научных работ
• Генерирует готовые конспекты
И др.

Вскоре обещают добавить поддержку MCP.

🔜 Попробовать: https://www.alphaxiv.org/assistant

@ai_machinelearning_big_data


#agent #ArXiv #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍3🔥3👏1
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Теперь официально Google выпустили Gemini CLI - AI-агента для работы прямо в терминале

• Лёгкий и мощный инструмент для разработки в командной строке
• Работает на базе Gemini 2.5 Pro
• Код агента в открытом доступе (Apache 2.0)
• Поддержка контекста в 1 миллион токенов
• Бесплатный тариф: до 60 запросов в минуту и 1000 в день
Привязка к Google Search
• Поддержка плагинов и скриптов
• Интеграция с VS Code (Gemini Code Assist)

Запуск в cli: npx https://github.com/google-gemini/gemini-cli

🔜 Анонс: https://blog.google/technology/developers/introducing-gemini-cli-open-source-ai-agent/
🔜 Github: https://github.com/google-gemini/gemini-cli/

@ai_machinelearning_big_data

#AI #ML #agent #Google
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥126👍4💋1
Forwarded from Machinelearning
🔥 Google DeepMind представили новую open-source библиотеку на Python для сборки асинхронных AI‑пайплайнов в реальном времени!

Новая библиотека позволяет собирать AI-процессы из компонентов — как LEGO для ИИ-агентов.

🔧 Особенности:
- Построение асинхронных, компонуемых пайплайнов
- Поддержка Gemini и Gemini Live API
- Основана на asyncio
- Обрабатывает мультимодальные данные: текст, изображения, аудио
- Внутри готовые агенты: real-time агент, исследователь, live-комментатор

💡 Подходит для:
- Разработки ИИ-агентов
- Генеративных моделей, работающих в реальном времени
- Быстрой сборки MVP с мультимодальными возможностями

Установка:


pip install genai-processors


Открытый код, готовые компоненты и интеграция с API.

Repo: https://github.com/google-gemini/genai-processors
Blog: https://developers.googleblog.com/en/genai-processors/

@ai_machinelearning_big_data


#DeepMind #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍2🔥1
Forwarded from Machinelearning
📌Новый прорыв в алгоритмах: найден способ считать кратчайшие пути быстрее Дейкстры

Метод преодоления "барьера сортировки" для задач кратчайшего пути в ориентированных графах.

Группа исследователей из университетов Синьхуа, Стенфорда и Института Макса Планика представили детерминированный алгоритм для решения задачи SSSP в ориентированных графах с неотрицательными вещественными весами, который работает за время, пропорциональное числу ребер, умноженному на логарифмический множитель, который растет медленнее, чем обычный логарифм.

Проблема поиска кратчайшего пути от одной вершины до всех остальных (SSSP) — одна из фундаментальных в теории графов, и её история тянется с 50-х годов прошлого века. Классический алгоритм Дейкстры, в связке с продвинутыми структурами данных, решает эту задачу за время, которое примерно пропорционально сумме числа рёбер и произведения числа вершин на логарифм от их же числа.

Именно этот множитель - число вершин, умноженное на логарифм, долгое время считался теоретическим минимумом, так как в своей основе алгоритм Дейкстры побочно сортирует вершины по расстоянию от источника. Этот предел известен как «барьер сортировки» и казался непреодолимым.


🟡Основная идея работы - гибрид из алгоритма Дейкстры и алгоритма Беллмана-Форда.

Алгоритм Дейкстры на каждом шаге выбирает из "границы" - множества еще не обработанных вершин ту, что находится ближе всего к источнику. Это и создает узкое место, так как размер границы может достигать величины, сопоставимой с общим числом вершин в графе, и на каждом шаге требуется находить минимум.

Алгоритм Беллмана-Форда, в свою очередь, не требует сортировки, но его сложность пропорциональна числу ребер, умноженному на количество шагов, что слишком долго.

🟡Новый подход использует рекурсию.

Вместо того чтобы поддерживать полную отсортированную границу, алгоритм фокусируется на ее сокращении. А если граница слишком велика, то запускается несколько шагов алгоритма Беллмана-Форда из ее вершин.

Это позволяет найти точное расстояние до некоторой части вершин, чьи кратчайшие пути коротки. Длинные же пути должны проходить через одну из "опорных" вершин, которых оказывается значительно меньше, чем вершин в исходной границе. Таким образом, сложная работа концентрируется только на этом небольшом наборе опорных точек.

🟡Принцип "разделяй и властвуй".

Он рекурсивно разбивает задачу на несколько уровней. На каждом уровне применяется вышеописанная техника сокращения границы, что позволяет значительно уменьшить объем работы на каждую вершину, поскольку логарифмический множитель эффективно делится на другой, более медленно растущий логарифмический член.

В итоге, путем подбора внутренних параметров алгоритма, которые являются специфическими функциями от логарифма числа вершин, и достигается итоговая временная сложность, пропорциональная числу ребер, умноженному на этот новый, более медленно растущий логарифмический множитель.

✔️ Зачем это нужно
— Быстрее решаются задачи в навигации, графах дорог, сетях и планировании.
— Доказано, что Дейкстра — не предел, и можно ещё ускорять поиск кратчайших путей.


🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #Sorting #Graphs #Algorithm
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2