🕸️ Chat4Data — расширение, которое превращает веб-скрапинг в диалог
Вместо кода и настроек — просто говоришь, что хочешь, и AI собирает структурированные данные с сайта.
Что умеет Chat4Data:
🔹 Собирает данные “на слух”
Опиши нужную таблицу или список — AI сам найдёт, распарсит и вставит в таблицу. Не нравится результат? Переспроси. Без кода, без боли.
🔹 Обходит все страницы сам
Автоматически кликает “Следующая”, грузит подгружаемые списки и собирает всё — без твоего участия.
🔹 Запускается за 3 клика
AI сам определяет, какие данные ценные, предлагает их — тебе остаётся только подтвердить. Быстро, как в Telegram-боте.
🔹 Не тратит токены на скрапинг
Анализ страницы — на AI, но сами данные забираются без токенов. В бета-версии дают 1 миллион токенов на другие задачи.
🔹 Скоро: скрапинг подстраниц, интерактив, интеграции...
📎 https://chat4data.ai
#ai #scraping #automation #nocode #tools
@python_be1
Вместо кода и настроек — просто говоришь, что хочешь, и AI собирает структурированные данные с сайта.
Что умеет Chat4Data:
🔹 Собирает данные “на слух”
Опиши нужную таблицу или список — AI сам найдёт, распарсит и вставит в таблицу. Не нравится результат? Переспроси. Без кода, без боли.
🔹 Обходит все страницы сам
Автоматически кликает “Следующая”, грузит подгружаемые списки и собирает всё — без твоего участия.
🔹 Запускается за 3 клика
AI сам определяет, какие данные ценные, предлагает их — тебе остаётся только подтвердить. Быстро, как в Telegram-боте.
🔹 Не тратит токены на скрапинг
Анализ страницы — на AI, но сами данные забираются без токенов. В бета-версии дают 1 миллион токенов на другие задачи.
🔹 Скоро: скрапинг подстраниц, интерактив, интеграции...
📎 https://chat4data.ai
#ai #scraping #automation #nocode #tools
@python_be1
🚀 15 AI‑инструментов, которые стоит взять на вооружение
Подборка популярных инструментов, которые уже сегодня помогают создавать, автоматизировать и масштабировать работу быстрее в разы:
🎬 Работа с видео
1. Runway.ml — генерация видео по тексту
2. Veed.io — монтаж, субтитры, озвучка онлайн
3. Invideo.io — создание роликов за минуты
🧠 Помощь в мышлении и генерации
4. ChatGPT.com — ассистент для ресёрча, генерации и правок
5. Grok.com — AI-помощник с быстрым доступом к знаниям
6. Deepseek.ai — генерация и анализ текста
7. Claude.ai — диалоговый ассистент от Anthropic
8. Perplexity.ai — умный поисковик с цитируемыми источниками
💻 Код, задачи и коммуникации
9. Cursor.com — AI-помощник для программиста
10. Notion.com — организация, заметки, задачи с AI-поддержкой
11. HubSpot.com — маркетинг, автоматизация и CRM
12. Canva.com — графика, презентации, визуал для соцсетей
13. Figma.com — интерфейсы, прототипы, совместная работа
🎨 Творчество
14. Midjourney.com — генерация изображений по промптам
15. RecCloud.com — быстрые AI-клипы и нарезки видео
#AI #FutureOfWork #Productivity #AItools #Automation
@python_be1
Подборка популярных инструментов, которые уже сегодня помогают создавать, автоматизировать и масштабировать работу быстрее в разы:
🎬 Работа с видео
1. Runway.ml — генерация видео по тексту
2. Veed.io — монтаж, субтитры, озвучка онлайн
3. Invideo.io — создание роликов за минуты
🧠 Помощь в мышлении и генерации
4. ChatGPT.com — ассистент для ресёрча, генерации и правок
5. Grok.com — AI-помощник с быстрым доступом к знаниям
6. Deepseek.ai — генерация и анализ текста
7. Claude.ai — диалоговый ассистент от Anthropic
8. Perplexity.ai — умный поисковик с цитируемыми источниками
💻 Код, задачи и коммуникации
9. Cursor.com — AI-помощник для программиста
10. Notion.com — организация, заметки, задачи с AI-поддержкой
11. HubSpot.com — маркетинг, автоматизация и CRM
12. Canva.com — графика, презентации, визуал для соцсетей
13. Figma.com — интерфейсы, прототипы, совместная работа
🎨 Творчество
14. Midjourney.com — генерация изображений по промптам
15. RecCloud.com — быстрые AI-клипы и нарезки видео
#AI #FutureOfWork #Productivity #AItools #Automation
@python_be1
🤖 Илон Маск: ИИ станет умнее любого человека — меньше чем за 2 года,
а умнее всего человечества вместе — меньше чем за 5 лет
По мнению Маска, у ИИ нет потолка — рост идёт экспоненциально, и конца этому тренду не видно.
Он прямо говорит: через несколько лет модели смогут выполнять работу целых корпораций, действуя как единая система.
📌 Почему это звучит серьёзно?
Потому что Dario Amodei, CEO Anthropic, говорит буквально то же самое — с теми же сроками.
Он ожидает, что к 2027 году появится суперинтеллект, способный управлять крупными компаниями как цифровой "мозг-конгломерат".
🔥 Если они правы — нас ждёт резкий сдвиг:
– ИИ перестаёт быть инструментом и становится экономическим субъектом
– Компании превращаются в оболочки для моделей
– Решения, стратегии, оптимизация — передаются системам ИИ
– Конкуренция меняется: человек против облачного суперинтеллекта с API
Мы приближаемся не просто к новой технологии —
а к новой форме разума, способной оперировать как корпорация, но быстрее, точнее и дешевле.
#AI #ElonMusk #Superintelligence #DarioAmodei #Anthropic #FutureOfWork #AGI
@python_be1
а умнее всего человечества вместе — меньше чем за 5 лет
По мнению Маска, у ИИ нет потолка — рост идёт экспоненциально, и конца этому тренду не видно.
Он прямо говорит: через несколько лет модели смогут выполнять работу целых корпораций, действуя как единая система.
📌 Почему это звучит серьёзно?
Потому что Dario Amodei, CEO Anthropic, говорит буквально то же самое — с теми же сроками.
Он ожидает, что к 2027 году появится суперинтеллект, способный управлять крупными компаниями как цифровой "мозг-конгломерат".
🔥 Если они правы — нас ждёт резкий сдвиг:
– ИИ перестаёт быть инструментом и становится экономическим субъектом
– Компании превращаются в оболочки для моделей
– Решения, стратегии, оптимизация — передаются системам ИИ
– Конкуренция меняется: человек против облачного суперинтеллекта с API
Мы приближаемся не просто к новой технологии —
а к новой форме разума, способной оперировать как корпорация, но быстрее, точнее и дешевле.
#AI #ElonMusk #Superintelligence #DarioAmodei #Anthropic #FutureOfWork #AGI
@python_be1
🎶 OpenAI выложила Harmony — свою библиотеку для генерации музыки с помощью ИИ!
📦 Harmony — это модульный стек для обучения и инференса аудиомоделей нового поколения:
— Поддерживает энкодеры, декодеры, diffusion, токенизацию и всё остальное
— Построен для мультитрековой генерации музыки
— Оптимизирован под масштаб: легко запускается на больших датасетах и длинных аудиотреках
— Подходит для экспериментов, ресерча и продакшена
💻 GitHub: https://github.com/openai/harmony
Если ты хочешь по-настоящему генерировать музыку с ИИ — это твой инструмент.
#AI #MusicGen #OpenAI #Harmony
@python_be1
📦 Harmony — это модульный стек для обучения и инференса аудиомоделей нового поколения:
— Поддерживает энкодеры, декодеры, diffusion, токенизацию и всё остальное
— Построен для мультитрековой генерации музыки
— Оптимизирован под масштаб: легко запускается на больших датасетах и длинных аудиотреках
— Подходит для экспериментов, ресерча и продакшена
💻 GitHub: https://github.com/openai/harmony
Если ты хочешь по-настоящему генерировать музыку с ИИ — это твой инструмент.
#AI #MusicGen #OpenAI #Harmony
@python_be1
🛠️ Microsoft Research выложили в open-source новый инструмент — Debug-Gym.
Это песочница, где LLM‑агенты могут:
✅ Ставить брейкпоинты
✅ Чекать переменные
✅ Перезаписывать файлы, пока тесты не позеленеют
Всё изолировано в Docker — безопасно при проведение тестов.
📊 Протестировано 9 моделей на 3 бенчмарках. В эксперименте модели решали 300 багов — с доступом к Debug-Gym и без.
Когда агентам дали дебаг‑инструменты, их точность выросла. Но даже лучшие решили <50% задач на SWE‑bench Lite.
Писать код ИИ уже умеет.
Дебажить — пока нет.
А это и есть самая трудная часть.
Microsoft уже работает над обучением моделей для поиска информации при отладке, как RAG — но для дебага.
🔗 Сам инструмент: https://microsoft.github.io/debug-gym/
🔗Статья: https://arxiv.org/abs/2503.21557
#microsoft #ai #ml
@python_be1
Это песочница, где LLM‑агенты могут:
✅ Ставить брейкпоинты
✅ Чекать переменные
✅ Перезаписывать файлы, пока тесты не позеленеют
Всё изолировано в Docker — безопасно при проведение тестов.
📊 Протестировано 9 моделей на 3 бенчмарках. В эксперименте модели решали 300 багов — с доступом к Debug-Gym и без.
Когда агентам дали дебаг‑инструменты, их точность выросла. Но даже лучшие решили <50% задач на SWE‑bench Lite.
Писать код ИИ уже умеет.
Дебажить — пока нет.
А это и есть самая трудная часть.
Microsoft уже работает над обучением моделей для поиска информации при отладке, как RAG — но для дебага.
🔗 Сам инструмент: https://microsoft.github.io/debug-gym/
🔗Статья: https://arxiv.org/abs/2503.21557
#microsoft #ai #ml
@python_be1
🎙️ NVIDIA выпустили Canary-1B v2 — открытую модель для распознавания и перевода речи, которая работает с 25 европейскими языками.
Что она умеет:
- 📝 Точное ASR (распознавание речи) и AST (перевод речи) между английским и 24 другими языками.
- Автоматическая пунктуация, капитализация и точные таймстампы до слова.
- Поддержка русского, французского, немецкого, испанского и многих других языков.
Чем интересна
- До 10× быстрее инференс, чем у моделей в 3 раза больше.
- Уже показывает state-of-the-art точность среди открытых моделей на Hugging Face.
- Лицензия CC-BY-4.0 — можно свободно использовать в проектах.
Под капотом:
- Архитектура: FastConformer-энкодер + Transformer-декодер (~978M параметров).
- Форматы: `.wav` и `.flac`, моно 16 кГц.
- Легко интегрируется через NVIDIA NeMo или прямо с Hugging Face.
Где пригодится:
🟢 голосовые ассистенты
🟢 субтитры и перевод видео
🟢 чат-боты с речевым вводом
🟢 real-time анализ речи
Всего ~978M параметров → легче, быстрее и дешевле в использовании, чем большие модели конкурентов.
🟠 Попробовать можно здесь: https://huggingface.co/nvidia/canary-1b-v2
🟠SET: https://huggingface.co/datasets/nvidia/Granary
🟠PARAKEET: https://huggingface.co/nvidia/parakeet-tdt-0.6b-v3
#AI #NVIDIA #SpeechRecognition #ASR #AST #Multilingual #MachineLearning #DeepLearning
@python_be1
Что она умеет:
- 📝 Точное ASR (распознавание речи) и AST (перевод речи) между английским и 24 другими языками.
- Автоматическая пунктуация, капитализация и точные таймстампы до слова.
- Поддержка русского, французского, немецкого, испанского и многих других языков.
Чем интересна
- До 10× быстрее инференс, чем у моделей в 3 раза больше.
- Уже показывает state-of-the-art точность среди открытых моделей на Hugging Face.
- Лицензия CC-BY-4.0 — можно свободно использовать в проектах.
Под капотом:
- Архитектура: FastConformer-энкодер + Transformer-декодер (~978M параметров).
- Форматы: `.wav` и `.flac`, моно 16 кГц.
- Легко интегрируется через NVIDIA NeMo или прямо с Hugging Face.
Где пригодится:
🟢 голосовые ассистенты
🟢 субтитры и перевод видео
🟢 чат-боты с речевым вводом
🟢 real-time анализ речи
Всего ~978M параметров → легче, быстрее и дешевле в использовании, чем большие модели конкурентов.
🟠 Попробовать можно здесь: https://huggingface.co/nvidia/canary-1b-v2
🟠SET: https://huggingface.co/datasets/nvidia/Granary
🟠PARAKEET: https://huggingface.co/nvidia/parakeet-tdt-0.6b-v3
#AI #NVIDIA #SpeechRecognition #ASR #AST #Multilingual #MachineLearning #DeepLearning
@python_be1
huggingface.co
nvidia/canary-1b-v2 · Hugging Face
We’re on a journey to advance and democratize artificial intelligence through open source and open science.
⚡️ DeepCode — открытая AI-платформу для автоматической генерации кода.
DeepCode превращает научные статьи и технические документы в готовые проекты, включая фронтенд, бэкенд и полноценные репозитории.
🔹 Основные возможности:
• Paper2Code — реализация идей из исследований в рабочий код
• Text2Web — генерация интерфейсов по описанию
• Text2Backend — автоматическое создание масштабируемых серверов
• Поддержка длинных документов и многофайловых проектов
🔜 В ближайшее время разработчики обещают:
• Автоматическую проверку и валидацию кода
• Повышение скорости генерации
• Улучшенную работу с требованиями
• Бенчмарки воспроизведения научных статей (PaperBench)
Проект полностью open source: https://github.com/HKUDS/DeepCode
#deepcode #AI #coding
@python_be1
DeepCode превращает научные статьи и технические документы в готовые проекты, включая фронтенд, бэкенд и полноценные репозитории.
🔹 Основные возможности:
• Paper2Code — реализация идей из исследований в рабочий код
• Text2Web — генерация интерфейсов по описанию
• Text2Backend — автоматическое создание масштабируемых серверов
• Поддержка длинных документов и многофайловых проектов
🔜 В ближайшее время разработчики обещают:
• Автоматическую проверку и валидацию кода
• Повышение скорости генерации
• Улучшенную работу с требованиями
• Бенчмарки воспроизведения научных статей (PaperBench)
Проект полностью open source: https://github.com/HKUDS/DeepCode
#deepcode #AI #coding
@python_be1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Не путай is и == в #Python
В Python есть тонкий момент: оператор is и оператор == не одно и то же.
- is проверяет идентичность объектов (указывают ли они на одну и ту же область памяти).
- == проверяет равенство значений.
Малоизвестный кейс: маленькие числа и короткие строки в Пайтон кешируются. Поэтому a is b иногда случайно даёт True — и это вводит в заблуждение. Но с большими числами и динамически созданными строками поведение будет другим.
Лучше всегда использовать ==, когда нужно сравнение по значению.
#Python, #программирование, #кодинг, #разработка, #собеседование, #интервью, #PythonJobs, #DataScience, #MachineLearning, #AI, #backend, #webdev, #Django, #Flask, #FastAPI, #API, #REST, #asyncio, #многопоточность, #многозадачность, #библиотеки, #NumPy, #Pandas, #TensorFlow, #PyTorch, #SQL, #ORM, #SQLAlchemy, #тестирование, #unittest, #pytest, #TDD, #алгоритмы, #структурыданных, #OOP,
@python_be1
В Python есть тонкий момент: оператор is и оператор == не одно и то же.
- is проверяет идентичность объектов (указывают ли они на одну и ту же область памяти).
- == проверяет равенство значений.
Малоизвестный кейс: маленькие числа и короткие строки в Пайтон кешируются. Поэтому a is b иногда случайно даёт True — и это вводит в заблуждение. Но с большими числами и динамически созданными строками поведение будет другим.
Лучше всегда использовать ==, когда нужно сравнение по значению.
#Python, #программирование, #кодинг, #разработка, #собеседование, #интервью, #PythonJobs, #DataScience, #MachineLearning, #AI, #backend, #webdev, #Django, #Flask, #FastAPI, #API, #REST, #asyncio, #многопоточность, #многозадачность, #библиотеки, #NumPy, #Pandas, #TensorFlow, #PyTorch, #SQL, #ORM, #SQLAlchemy, #тестирование, #unittest, #pytest, #TDD, #алгоритмы, #структурыданных, #OOP,
@python_be1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Python трюк: динамическое добавление методов в класс
Мало кто знает, но в Python можно на лету добавлять методы в уже созданный класс. Это удобно для плагинов, тестов или динамических API.
⚡ Приём называется monkey patching.
Это мощный инструмент — но им надо пользоваться аккуратно, чтобы не сломать читаемость кода.
#Python, #программирование, #кодинг, #разработка, #собеседование, #интервью, #PythonJobs, #DataScience, #MachineLearning, #AI, #backend, #webdev, #Django, #Flask, #FastAPI, #API, #REST, #asyncio, #многопоточность, #многозадачность, #библиотеки, #NumPy, #Pandas, #TensorFlow, #PyTorch, #SQL, #ORM, #SQLAlchemy, #тестирование, #unittest, #pytest, #TDD, #алгоритмы, #структурыданных, #OOP, #паттерныпроектирования, #чистыйкод, #DevOps, #CICD, #Docker, #Kubernetes, #AWS, #Azure, #GCP, #скрипты, #автоматизация, #BigData, #анализданных,
@python_be1
Мало кто знает, но в Python можно на лету добавлять методы в уже созданный класс. Это удобно для плагинов, тестов или динамических API.
⚡ Приём называется monkey patching.
Это мощный инструмент — но им надо пользоваться аккуратно, чтобы не сломать читаемость кода.
#Python, #программирование, #кодинг, #разработка, #собеседование, #интервью, #PythonJobs, #DataScience, #MachineLearning, #AI, #backend, #webdev, #Django, #Flask, #FastAPI, #API, #REST, #asyncio, #многопоточность, #многозадачность, #библиотеки, #NumPy, #Pandas, #TensorFlow, #PyTorch, #SQL, #ORM, #SQLAlchemy, #тестирование, #unittest, #pytest, #TDD, #алгоритмы, #структурыданных, #OOP, #паттерныпроектирования, #чистыйкод, #DevOps, #CICD, #Docker, #Kubernetes, #AWS, #Azure, #GCP, #скрипты, #автоматизация, #BigData, #анализданных,
@python_be1
🎯 Новый вектор атак на ИИ — скрытые промпты в картинках
Trail of Bits показали, что хакеры могут прятать инструкции в изображениях. Пока картинка оригинального размера — всё чисто.
Но как только сервис (например, Gemini CLI или **Vertex AI Studio**) автоматически сжимает её, проявляется скрытый текст.
📌 Что это значит:
- ИИ «видит» спрятанный промпт и исполняет его, думая, что это команда пользователя.
- Так можно обойти фильтры и заставить модель делать то, что задумал атакующий.
🛠 Как защититься:
- Инструмент Anamorpher (open-source) для генерации и проверки таких атак.
- Защита: многоуровневая проверка картинок и отслеживание артефактов при масштабировании.
⚠️ Итог: даже безобидная картинка может оказаться «троянским конем» для ИИ-систем.
🔗Github: https://github.com/trailofbits/anamorpher
🔗 Подробнее: blog.trailofbits.com/2025/08/21/weaponizing-image-scaling-against-production-ai-systems/
#AI #Security #PromptInjection #TrailOfBits
@python_be1
Trail of Bits показали, что хакеры могут прятать инструкции в изображениях. Пока картинка оригинального размера — всё чисто.
Но как только сервис (например, Gemini CLI или **Vertex AI Studio**) автоматически сжимает её, проявляется скрытый текст.
📌 Что это значит:
- ИИ «видит» спрятанный промпт и исполняет его, думая, что это команда пользователя.
- Так можно обойти фильтры и заставить модель делать то, что задумал атакующий.
🛠 Как защититься:
- Инструмент Anamorpher (open-source) для генерации и проверки таких атак.
- Защита: многоуровневая проверка картинок и отслеживание артефактов при масштабировании.
⚠️ Итог: даже безобидная картинка может оказаться «троянским конем» для ИИ-систем.
🔗Github: https://github.com/trailofbits/anamorpher
🔗 Подробнее: blog.trailofbits.com/2025/08/21/weaponizing-image-scaling-against-production-ai-systems/
#AI #Security #PromptInjection #TrailOfBits
@python_be1
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Полезный совет по ускорению Python-кода
Многие считают, что list comprehension всегда оптимален. Но при больших объёмах данных связка map + filter может быть быстрее: она выполняется на уровне C и не создаёт лишних промежуточных структур.
Когда нужно одновременно фильтровать и преобразовывать элементы, map + filter часто выигрывает по скорости.
#Python, #программирование, #кодинг, #разработка, #собеседование, #интервью, #PythonJobs, #DataScience, #MachineLearning, #AI, #backend, #webdev, #Django, #Flask, #FastAPI, #API, #REST, #asyncio, #многопоточность, #многозадачность, #библиотеки, #NumPy, #Pandas, #TensorFlow, #PyTorch, #SQL, #ORM, #SQLAlchemy, #тестирование, #unittest, #pytest, #TDD, #алгоритмы, #структурыданных, #OOP,
@python_be1
Многие считают, что list comprehension всегда оптимален. Но при больших объёмах данных связка map + filter может быть быстрее: она выполняется на уровне C и не создаёт лишних промежуточных структур.
Когда нужно одновременно фильтровать и преобразовывать элементы, map + filter часто выигрывает по скорости.
#Python, #программирование, #кодинг, #разработка, #собеседование, #интервью, #PythonJobs, #DataScience, #MachineLearning, #AI, #backend, #webdev, #Django, #Flask, #FastAPI, #API, #REST, #asyncio, #многопоточность, #многозадачность, #библиотеки, #NumPy, #Pandas, #TensorFlow, #PyTorch, #SQL, #ORM, #SQLAlchemy, #тестирование, #unittest, #pytest, #TDD, #алгоритмы, #структурыданных, #OOP,
@python_be1
🐬 DeepSeek-V3.2-Exp
🚀 Новая экспериментальная модель от DeepSeek:
- Сохраняет качество V3.1, но снижает цены API на 50–75%
- Ускоряет длинный контекст за счёт DeepSeek Sparse Attention (DSA)
- Доступна в приложении, на вебе и в API, веса и GPU-ядра выложены в открытый доступ
- V3.1 остаётся онлайн до 25 октября для сравнения
💰 Новые цены:
- Input (cache hit): $0.07 → $0.028 (−60%)
- Input (cache miss): $0.56 → $0.28 (−50%)
- Output: $1.68 → $0.42 (−75%)
📊 Качество в целом не пострадало:
MMLU-Pro 85.0 vs 85.0, AIME-2025 89.3 vs 88.4, с небольшими просадками вроде HMMT-2025 (83.6 vs 86.1).
🔗 Hugging Face: https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Exp)
🔗 Tech Report: https://github.com/deepseek-ai/DeepSeek-V3.2-Exp/blob/main/DeepSeek_V3_2.pdf)
🔗Github: https://github.com/deepseek-ai/DeepSeek-V3.2-Exp/blob/main/DeepSeek_V3_2.pdf
#DeepSeek #AI #V32 #SparseAttention #LLM
@python_be1
🚀 Новая экспериментальная модель от DeepSeek:
- Сохраняет качество V3.1, но снижает цены API на 50–75%
- Ускоряет длинный контекст за счёт DeepSeek Sparse Attention (DSA)
- Доступна в приложении, на вебе и в API, веса и GPU-ядра выложены в открытый доступ
- V3.1 остаётся онлайн до 25 октября для сравнения
💰 Новые цены:
- Input (cache hit): $0.07 → $0.028 (−60%)
- Input (cache miss): $0.56 → $0.28 (−50%)
- Output: $1.68 → $0.42 (−75%)
📊 Качество в целом не пострадало:
MMLU-Pro 85.0 vs 85.0, AIME-2025 89.3 vs 88.4, с небольшими просадками вроде HMMT-2025 (83.6 vs 86.1).
🔗 Hugging Face: https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Exp)
🔗 Tech Report: https://github.com/deepseek-ai/DeepSeek-V3.2-Exp/blob/main/DeepSeek_V3_2.pdf)
🔗Github: https://github.com/deepseek-ai/DeepSeek-V3.2-Exp/blob/main/DeepSeek_V3_2.pdf
#DeepSeek #AI #V32 #SparseAttention #LLM
@python_be1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Трюк: проверка сетевых сервисов в Python через socket
В Python можно быстро проверить, доступен ли сетевой сервис и как быстро он отвечает, не прибегая к сложным утилитам.
Это помогает опытным разработчикам, когда нужно оперативно убедиться, что API или база данных действительно доступны и не "подвисают".
Через socket можно реализовать мини-проверку состояния сети и времени отклика.
#Python, #программирование, #кодинг, #разработка, #собеседование, #интервью, #PythonJobs, #DataScience, #MachineLearning, #AI, #backend, #webdev, #Django, #Flask, #FastAPI, #API, #REST, #asyncio, #многопоточность, #многозадачность, #библиотеки, #NumPy, #Pandas, #TensorFlow, #PyTorch, #SQL, #ORM, #SQLAlchemy, #тестирование, #unittest
@python_be1
В Python можно быстро проверить, доступен ли сетевой сервис и как быстро он отвечает, не прибегая к сложным утилитам.
Это помогает опытным разработчикам, когда нужно оперативно убедиться, что API или база данных действительно доступны и не "подвисают".
Через socket можно реализовать мини-проверку состояния сети и времени отклика.
#Python, #программирование, #кодинг, #разработка, #собеседование, #интервью, #PythonJobs, #DataScience, #MachineLearning, #AI, #backend, #webdev, #Django, #Flask, #FastAPI, #API, #REST, #asyncio, #многопоточность, #многозадачность, #библиотеки, #NumPy, #Pandas, #TensorFlow, #PyTorch, #SQL, #ORM, #SQLAlchemy, #тестирование, #unittest
@python_be1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Python: функции-фабрики
Простой, но мощный трюк: генерация функций на лету через замыкания. Вместо дублирования логики можно одной фабрикой создавать десятки разных функций.
Хочешь больше таких фишек? Подписывайся на нас и каждый день получай свежие и нестандартные советы, которые реально прокачают твои навыки разработчика!
#Python, #программирование, #кодинг, #разработка, #собеседование, #интервью, #PythonJobs, #DataScience, #MachineLearning, #AI, #backend, #webdev, #Django, #Flask, #FastAPI, #API, #REST, #asyncio, #многопоточность, #многозадачность, #библиотеки, #NumPy, #Pandas, #TensorFlow, #PyTorch, #SQL, #ORM, #SQLAlchemy, #тестирование, #unittest, #pytest, #TDD, #алгоритмы, #структурыданных, #OOP,
@python_be1
Простой, но мощный трюк: генерация функций на лету через замыкания. Вместо дублирования логики можно одной фабрикой создавать десятки разных функций.
Хочешь больше таких фишек? Подписывайся на нас и каждый день получай свежие и нестандартные советы, которые реально прокачают твои навыки разработчика!
#Python, #программирование, #кодинг, #разработка, #собеседование, #интервью, #PythonJobs, #DataScience, #MachineLearning, #AI, #backend, #webdev, #Django, #Flask, #FastAPI, #API, #REST, #asyncio, #многопоточность, #многозадачность, #библиотеки, #NumPy, #Pandas, #TensorFlow, #PyTorch, #SQL, #ORM, #SQLAlchemy, #тестирование, #unittest, #pytest, #TDD, #алгоритмы, #структурыданных, #OOP,
@python_be1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Ускоряем Python-скрипты с помощью библиотеки numba
Когда ваш Python-код начинает тормозить из-за тяжёлых вычислительных циклов, спасает библиотека numba. Она компилирует функции в машинный код с помощью JIT-компиляции и позволяет ускорить выполнение в десятки раз без переписывания логики на C или C++.
Просто добавьте декоратор @njit к функции с числовыми расчётами или обработкой массивов — и получите мгновенный прирост скорости.
#Python, #программирование, #кодинг, #разработка, #собеседование, #интервью, #PythonJobs, #DataScience, #MachineLearning, #AI, #backend, #webdev, #Django, #Flask, #FastAPI, #API, #REST, #asyncio, #многопоточность, #многозадачность, #библиотеки, #NumPy, #Pandas, #TensorFlow, #PyTorch, #SQL, #ORM, #SQLAlchemy, #тестирование, #unittest, #pytest, #TDD, #алгоритмы, #структурыданных, #питон
@python_be1
Когда ваш Python-код начинает тормозить из-за тяжёлых вычислительных циклов, спасает библиотека numba. Она компилирует функции в машинный код с помощью JIT-компиляции и позволяет ускорить выполнение в десятки раз без переписывания логики на C или C++.
Просто добавьте декоратор @njit к функции с числовыми расчётами или обработкой массивов — и получите мгновенный прирост скорости.
#Python, #программирование, #кодинг, #разработка, #собеседование, #интервью, #PythonJobs, #DataScience, #MachineLearning, #AI, #backend, #webdev, #Django, #Flask, #FastAPI, #API, #REST, #asyncio, #многопоточность, #многозадачность, #библиотеки, #NumPy, #Pandas, #TensorFlow, #PyTorch, #SQL, #ORM, #SQLAlchemy, #тестирование, #unittest, #pytest, #TDD, #алгоритмы, #структурыданных, #питон
@python_be1
🧠 Ming-Flash-Omni-Preview - новый ориентир для omni-modal моделей с архитектурой 103B-A9B Sparse MoE, сочетающей мощь и эффективность.
📸 1. Контролируемая генерация изображений
Модель вводит концепт Generative Segmentation-as-Editing - можно править изображение на уровне пикселей. На бенчмарке GenEval — впечатляющий результат 0.90.
🎬 2. Понимание потокового видео
Расширенные возможности для детального анализа аудио-видео потоков в реальном времени — понимание контекста, сцен и звука синхронно.
🏹GitHub: https://github.com/inclusionAI/Ming
🤗Hugging Face: https://huggingface.co/inclusionAI/Ming-flash-omni-Preview
🤖ModelScope: https://modelscope.cn/models/inclusionAI/Ming-flash-omni-Preview
#OpenSourceModels #AI #OmniModal #MingFlash
@python_be1
📸 1. Контролируемая генерация изображений
Модель вводит концепт Generative Segmentation-as-Editing - можно править изображение на уровне пикселей. На бенчмарке GenEval — впечатляющий результат 0.90.
🎬 2. Понимание потокового видео
Расширенные возможности для детального анализа аудио-видео потоков в реальном времени — понимание контекста, сцен и звука синхронно.
🏹GitHub: https://github.com/inclusionAI/Ming
🤗Hugging Face: https://huggingface.co/inclusionAI/Ming-flash-omni-Preview
🤖ModelScope: https://modelscope.cn/models/inclusionAI/Ming-flash-omni-Preview
#OpenSourceModels #AI #OmniModal #MingFlash
@python_be1
⚡️ OpenAI выпустила GPT-5-Codex-Mini.
GPT-5-Codex-Mini - более доступная версия флагманского Codex, она в 4 раза эффективней по затратам по сравнению с полной версией GPT-5-Codex при небольшом компромиссе в производительности.
Разница в возможностях минимальна: на SWE-bench Verified версия Mini набрала 71.3%, в то время как старшая GPT-5-Codex - 74.5%. OpenAI рекомендует переключаться на Mini для решения более простых задач или для экономии ресурсов при приближении к лимитам. Старший Codex будет автоматически предлагать переход на Mini, когда пользователь достигнет 90% своего лимита.
Модель уже доступна в CLI и расширении для IDE, а в скором времени появится и поддержка через API.
#news #ai #ml
@python_be1
GPT-5-Codex-Mini - более доступная версия флагманского Codex, она в 4 раза эффективней по затратам по сравнению с полной версией GPT-5-Codex при небольшом компромиссе в производительности.
Разница в возможностях минимальна: на SWE-bench Verified версия Mini набрала 71.3%, в то время как старшая GPT-5-Codex - 74.5%. OpenAI рекомендует переключаться на Mini для решения более простых задач или для экономии ресурсов при приближении к лимитам. Старший Codex будет автоматически предлагать переход на Mini, когда пользователь достигнет 90% своего лимита.
Модель уже доступна в CLI и расширении для IDE, а в скором времени появится и поддержка через API.
#news #ai #ml
@python_be1
🖥 Python: Почему твой asyncio-код тормозит и блокируется?
Чаще всего проблема не в самом asyncio, а в том, что внутри async-функций ты вызываешь блокирующий код. Например, time.sleep, requests.get, тяжёлые циклы с вычислениями или работа с диском без специальных обёрток. Такой вызов останавливает весь event loop, и остальные корутины тупо ждут.
Главное правило: внутри async-функций каждая долгая операция должна либо быть асинхронной (через await), либо вынесена в поток или процесс. Если в корутине нет нормальных await, она вообще не отдаёт управление циклу, и твой «асинхронный» код ведёт себя как обычный синхронный.
Используй:
- асинхронные библиотеки (aiohttp вместо requests и т.п.);
- asyncio.sleep вместо time.sleep;
- asyncio.to_thread или отдельный процесс для тяжёлых синхронных задач.
Как только уберёшь блокирующие вызовы из корутин, код перестанет «залипать» и начнёт реально работать параллельно по I/O.
```
import asyncio
import time
async def bad_task():
print("start bad")
time.sleep(2)
print("end bad")
async def good_task():
print("start good")
await asyncio.to_thread(time.sleep, 2)
print("end good")
async def main():
await asyncio.gather(bad_task(), good_task())
asyncio.run(main())
```
https://www.youtube.com/shorts/LZgy5YvQR4o
@python_be1
Чаще всего проблема не в самом asyncio, а в том, что внутри async-функций ты вызываешь блокирующий код. Например, time.sleep, requests.get, тяжёлые циклы с вычислениями или работа с диском без специальных обёрток. Такой вызов останавливает весь event loop, и остальные корутины тупо ждут.
Главное правило: внутри async-функций каждая долгая операция должна либо быть асинхронной (через await), либо вынесена в поток или процесс. Если в корутине нет нормальных await, она вообще не отдаёт управление циклу, и твой «асинхронный» код ведёт себя как обычный синхронный.
Используй:
- асинхронные библиотеки (aiohttp вместо requests и т.п.);
- asyncio.sleep вместо time.sleep;
- asyncio.to_thread или отдельный процесс для тяжёлых синхронных задач.
Как только уберёшь блокирующие вызовы из корутин, код перестанет «залипать» и начнёт реально работать параллельно по I/O.
```
import asyncio
import time
async def bad_task():
print("start bad")
time.sleep(2)
print("end bad")
async def good_task():
print("start good")
await asyncio.to_thread(time.sleep, 2)
print("end good")
async def main():
await asyncio.gather(bad_task(), good_task())
asyncio.run(main())
```
https://www.youtube.com/shorts/LZgy5YvQR4o
@python_be1
YouTube
🔥 Python: Почему твой asyncio-код тормозит и блокируется? #python #ai #питона #asyncio
Чаще всего проблема не в самом asyncio, а в том, что внутри async-функций ты вызываешь блокирующий код. Например, time.sleep, requests.get, тяжёлые циклы с в...
Новая работа MIT: LLM, который видит и меняет состояние Python
В MIT предложили подход, при котором языковая модель работает не только с текстом, а напрямую с живым состоянием Python-кода - переменными, объектами в памяти и текущей точкой выполнения.
Подход называется NIGHTJAR.
Главный результат
В экспериментах NIGHTJAR сократил объем кода в среднем на 39.6% без потери корректности.
В чем была проблема
Обычная LLM:
- читает текст
- генерирует текст
- не видит реальные данные программы
Поэтому типичный пайплайн выглядит так:
- данные сериализуются в текст
- отправляются модели
- ответ парсится
- программа вручную обновляется
Много glue-кода, много мест для ошибок.
Что меняет совместное состояние
Shared state полностью меняет модель взаимодействия:
- LLM может читать и писать переменные
- изменять объекты прямо в памяти
- останавливать и пропускать циклы
- работать с текущим состоянием выполнения
Модель не «рассуждает о коде», она с ним взаимодействует.
Как это реализовано
LLM не получает прямой доступ к памяти.
Она отправляет небольшие команды:
- прочитать переменную
- записать значение
- обновить объект
- выйти из цикла
Python-обработчик выполняет эти команды.
Такой контракт авторы называют natural function interface.
Результаты
На бенчмарке SPSBench с 25 программами:
- корректность осталась на уровне ручной интеграции или выше
- код стал заметно короче
- но время выполнения иногда росло до 4.3 раза
Причина проста - каждое обращение к состоянию может требовать отдельного вызова модели.
Почему это важно
- меньше шаблонного glue-кода
- проще писать сложную логику с участием LLM
- шаг к более тесной интеграции AI и runtime
- фундамент для новых агентных и интерактивных систем
Это не про ускорение.
Это про изменение архитектуры взаимодействия между программой и моделью.
📌 Статья: arxiv.org/abs/2512.14805
#AI #LLM #Python
@python_be1
В MIT предложили подход, при котором языковая модель работает не только с текстом, а напрямую с живым состоянием Python-кода - переменными, объектами в памяти и текущей точкой выполнения.
Подход называется NIGHTJAR.
Главный результат
В экспериментах NIGHTJAR сократил объем кода в среднем на 39.6% без потери корректности.
В чем была проблема
Обычная LLM:
- читает текст
- генерирует текст
- не видит реальные данные программы
Поэтому типичный пайплайн выглядит так:
- данные сериализуются в текст
- отправляются модели
- ответ парсится
- программа вручную обновляется
Много glue-кода, много мест для ошибок.
Что меняет совместное состояние
Shared state полностью меняет модель взаимодействия:
- LLM может читать и писать переменные
- изменять объекты прямо в памяти
- останавливать и пропускать циклы
- работать с текущим состоянием выполнения
Модель не «рассуждает о коде», она с ним взаимодействует.
Как это реализовано
LLM не получает прямой доступ к памяти.
Она отправляет небольшие команды:
- прочитать переменную
- записать значение
- обновить объект
- выйти из цикла
Python-обработчик выполняет эти команды.
Такой контракт авторы называют natural function interface.
Результаты
На бенчмарке SPSBench с 25 программами:
- корректность осталась на уровне ручной интеграции или выше
- код стал заметно короче
- но время выполнения иногда росло до 4.3 раза
Причина проста - каждое обращение к состоянию может требовать отдельного вызова модели.
Почему это важно
- меньше шаблонного glue-кода
- проще писать сложную логику с участием LLM
- шаг к более тесной интеграции AI и runtime
- фундамент для новых агентных и интерактивных систем
Это не про ускорение.
Это про изменение архитектуры взаимодействия между программой и моделью.
📌 Статья: arxiv.org/abs/2512.14805
#AI #LLM #Python
@python_be1