Physics.Math.Code
137K subscribers
5.08K photos
1.74K videos
5.77K files
4.12K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
Download Telegram
📘 PHP 8. Наиболее полное руководство [2023] Котеров, Симдянов

⚠️ Книги предоставляется вам для ознакомления и не для распространения

💳 Купить книгу

💾 Ознакомиться с книгой

▪️ Нововведения с PHP 7.1 по PHP 8.1
▪️ Объектно-ориентированное программирование
▪️ Шаблоны проектирования
▪️ Генераторы, итераторы, перечисления и атрибуты
▪️ Приемы работы с PostgreSQL и Redis
▪️ Стандарты PSR
#php #программирование #web #html

💡 Physics.Math.Code
PHP_8_Наиболее_полное_руководство_2023_Котеров,_Симдянов_.pdf
12.2 MB
📘 PHP 8. Наиболее полное руководство [2023] Котеров, Симдянов

Книга предоставляет детальное и полное изложение языка PHP 8 от простого к сложному. Ее можно использовать как для изучения языка с нуля, так и для структурирования знаний, изучения тонких моментов синтаксиса и новых возможностей последней версии. Описываются все значимые новвоведения. Рассматриваются новые типы, атрибуты, перечисления, именованные аргументы, сопоставления, объединенные типы, новые операторы ??= и ?-> и много другое. Основной упор в книге делается на объектно-ориентированные возможности языка, поэтому классы и объекты рассматриваются практически с первых глав. Приведено описание синтаксиса PHP, а тажке инструментов для работы с массивами, файлами, СУБД PostgreSQL, Redis, регулярными выражениями, графическими примитивами, сессиями и т. д.

По сравнению с предыдущей книгой авторов “PHP 7 ” добавлены 23 новые главы, а остальные обновлены или переработаны. На сайте издательства находятся исходные коды всех листингов. Для веб-программистов // #php #программирование #web #html

📝 Исходные коды всех листингов можно скачать по ссылкам https://github.com/igorsimdyanov/php8, https://zip.bhv.ru/9785977516921.zip,
Media is too big
VIEW IN TELEGRAM
😈 Математик и черт [СССР, 1972]

В фильме «Математик и чёрт» [СССР, 1972] математик предлагает продать душу дьяволу за то, чтобы тот доказал или опроверг теорему Ферма. Фильм снят по мотивам рассказа "Саймон Флэгг и дьявол". Если вы уже посмотрели потрясающую короткометражку с Вициным про теорию относительности и Физику, как приложение к хоккею – самое время идти дальше. Учёный заключает пари с чёртом. Все, что нужно – доказать Великую теорему Ферма. Чёрт думает, что легко справится с задачей и рьяно берётся за дело. Но увы, все оказывается не так просто.

«Трудность решения в какой-то мере входит в само понятие задачи: там, где нет трудности, нет и задачи. » ©️ (Д. Пойа)

Жанр: Научно-популярный
Режиссер: Райтбурт С.


Игровой научно-популярный фильм по рассказу Артура Порджеса «Саймон Флэгг и дьявол».
Математик и дьявол заключают пари — дьявол должен либо ответить на вопрос «Верна ли Великая теорема Ферма?» и забрать душу математика, либо заплатить деньги. Режиссер использует этот сюжет как повод рассказать о теореме Ферма и истории ее доказательства. (В 1972 году, когда снимался фильм, теорема Ферма еще не была доказана.)

💡 Physics.Math.Code
Please open Telegram to view this post
VIEW IN TELEGRAM
🌈 Цвета побежалости — радужные цвета, образующиеся на гладкой поверхности металла или минерала в результате образования тонкой прозрачной поверхностной окисной плёнки и интерференции света в ней. Чаще всего она появляется от теплового воздействия. Часто термин используют в металлообработке стали.

Цвета побежалости возникают из-за интерференции белого света в тонких плёнках на отражающей поверхности, при этом по мере роста толщины плёнки последовательно возникают условия гашения лучей с той или иной длиной волны. Сначала из белого света вычитается фиолетово-синий цвет (λ ~ 400 нм), и мы наблюдаем дополнительный цвет — жёлтый. Далее, по мере роста толщины плёнки, и, соответственно, увеличения длины волны «погасившихся» лучей, из непрерывного солнечного спектра вычитается зелёный цвет, и мы наблюдаем красный, и т. д. Цвета побежалости возникают чаще всего при окислении, в результате термической обработки металлов. Обычно, при быстром нагреве, они столь же быстро сменяют друг друга. Цвет побежалости (а также цвета каления) раньше, до появления пирометров, широко использовали в качестве индикатора температуры нагрева железа и стали при термообработке. По цветам побежалости также судили о температуре нагрева стальной стружки и резца при операциях точения, сверления, резания.

Для углеродистой стали характерны следующие переходы цвета: соломенный (220 °C), коричневый (240 °C), пурпурный (260 °C), синий (300 °C), светло-серый (330—350 °C).

Для нержавеющих сталей изменение цвета при нагреве на воздухе наблюдается: светло-соломенный (300 °C), соломенный (400 °C), красно-коричневый (500 °C), фиолетово-синий (600 °C), синий (700 °C). Нередко цвета побежалости на нержавеющей стали путают с радужной окраской, которая может возникать при температурах не выше 100 °C. Радужная окраска не связана с перегревом стали.

На поверхности некоторых минералов в результате появления тонкого слоя оксидов наблюдаются интерференционные цвета, аналогичные цветам побежалости (см. Цвет минералов).

💡 Physics.Math.Code
Media is too big
VIEW IN TELEGRAM
🧲 Магнитный феномен вращения или скрытый подвох в непонимании эксперимента?

Мы знаем, что магнит притягивает металлический шарик. И если мы проведем магнитом возле металлического шарика, то он начнется катиться в сторону магнита. А что, если магниты мы закрепим на вращающемся роторе двигателя, а шарики расположим в пластиковой коробке над вращающимся ротором? Будут ли они раскручиваться под действием вращающегося магнитного поля? Да? Нет? Почему?

Чем эта конструкция принципиально отличается от асинхронного двигателя? Свои мнения и предположения пишите в комментарии. 📝

#физика #электродинамика #опыты #видеоуроки #научные_фильмы #магнетизм #physics #эксперименты

💡 Physics.Math.Code
📚 Подборка книг по физике плазмы

💾 Скачать книги

👤 АРЦИМОВИЧ Лев Андреевич — Выдающийся советский физик, академик АН СССР. В 1928 г. окончил физико-математический факультет Белорусского университета. В 1932–1936 гг. — доцент Ленинградского государственного университета. С 1946 г. — профессор кафедры прикладной ядерной физики МИФИ. С 1951 г. — бессменный руководитель исследований по физике высокотемпературной плазмы и проблеме управляемого термоядерного синтеза. В 1953–1973 гг. — профессор, основатель кафедры атомной физики МГУ. Автор фундаментальных трудов по атомной и ядерной физике. Под его руководством впервые в СССР был разработан электромагнитный метод разделения изотопов и впервые в мире в лабораторных условиях осуществлена термоядерная реакция. Непосредственный участник советского атомного проекта. Руководил работой на термоядерных установках "Токамак", завершившейся получением физической термоядерной реакции. Лауреат Сталинской премии 1-й степени (1953), Ленинской премии (1958), Государственной премии СССР (1971).

#физика #квантовая_физика #термодинамика #подборка_книг #плазма #physics #атомная_физика #ядерная_физика #электричество #магнетизм

💡 Physics.Math.Code
Подборка книг по физике плазмы.zip
38.4 MB
📚 Подборка книг по физике плазмы [8 книг]

📔 Физика плазмы для физиков [1979] Арцимович Л.А., Сагдеев Р.З
📕 Избранные труды. Атомная физика и физика плазмы [1978] Арцимович Л.А.
📗 Управляемые термоядерные реакции [1961] Арцимович Л.А.
📘 Элементарная физика плазмы [1963] Арцимович Л.А.
📙 Движение заряженных частиц в электрических и магнитых полях [1978] Арцимович Л.А., Лукьянов С.Ю.
📓 Замкнутые плазменные конфигурации [1969] Арцимович Л.А.
📒 Что каждый физик должен знать о плазме [1976] Арцимович Л.А.
📔 Энергетика будущего [1964] Арцимович Л.А., и др.


Книги рассчитаны на любознательного специалиста, желающего получить новейшую информацию о современной области науки - физике плазмы.
Сначала плазма интересовала физиков как своеобразный проводник электрического тока, а также как источник света. Сейчас ее уже рассматривают как естественное состояние вещества, нагретого до очень высокой температуры, и как динамическую систему - объект приложения электромагнитных сил. Новые методы подхода к изучению поведения плазмы органически связаны с большими техническими проблемами, для которых физика плазмы и служит научным фундаментом.

Книги с интересом прочтут не только физики, но и все, кто интересуется современной физикой. Их можно рекомендовать как своеобразный компактный лекционный курс студентам физических и физико-технических факультетов вузов. #физика #квантовая_физика #термодинамика #подборка_книг #плазма #physics #атомная_физика #ядерная_физика #электричество #магнетизм

💡 Physics.Math.Code
📗 Основы гидравлики и теплотехники [2022] Замалеев, Посохин, Чефанов

💾 Скачать книгу

Авторы поставили перед собой цель создать книгу небольшого объема, которая содержала бы весь круг вопросов, включенных в рабочую программу дисциплины «Основы гидравлики и теплотехники». Учебное пособие с точки зрения системного подхода к изучению дисциплины разделено на три части.
▪️ В первой рассматриваются положения технической термодинамики, относящиеся к формам энергии и их преобразованиям в технических процессах. Общие соотношения классической термодинамики для макроскопических свойств веществ демонстрируются на примерах рассмотрения водяного пара и влажного воздуха.
▪️ Во второй части рассматриваются вопросы механики несжимаемой и сжимаемой жидкости, которые являются основой для расчета переноса механической энергии и свойств жидкости в изотермических потоках. Течение сжимаемой жидкости (газа) изучается как приложение термодинамики к поточным процессам.
▪️ В третьей части работы изложены основные положения теории тепломассообмена во всех его проявлениях: теплопроводность, естественная и вынужденная конвекция, излучение. Рассмотрены вопросы теплопередачи, а также теплообмен при фазовых превращениях, тепло- и массообмен в двухкомпонентных средах. Последняя глава третьей части знакомит читателя с некоторыми аспектами нестационарной теплопроводности.
#гидравлика #теплотехника #термодинамика #мкт #механика

💡 Physics.Math.Code
Основы_гидравлики_и_теплотехники_2022_Замалеев,_Посохин,_Чефанов.pdf
3.5 MB
📗 Основы гидравлики и теплотехники [2022] Замалеев, Посохин, Чефанов

Учебное пособие содержит дидактический материал, отвечающий требованиям Федерального государственного образовательного стандарта профессионального образования по направлению подготовки «Строительство в области базовой (общепрофессиональной) части профессионального цикла», необходимый бакалаврам для освоения основных положений термодинамики, механики жидкости, тепломассообмена. Рекомендовано УМО вузов РФ по образованию в области строительства в качестве учебного пособия для студентов ВПО, обучающихся по программе бакалавриата по направлению подготовки 270800 — «Строительство» (профили «Промышленное и гражданское строительство», «Водоснабжение и водоотведение»).

Основой термодинамики как науки можно считать опубликованный в 1824 г. французским военным инженером С. Карно его единственный трактат «Размышления о движущей силе огня и о машинах, способных развивать эту силу». В этой работе Карно впервые изложил проблему превращения теплоты в работу в общем виде, ввел понятия «идеальная машина» и «обратимый круговой процесс». Его выводы, отвлеченные от определенной конструкции машины и от конкретного рабочего тела, привели к открытию закономерности, которая теперь называется вторым законом термодинамики.#гидравлика #теплотехника #термодинамика #мкт #механика

💡 Physics.Math.Code
Ядерная батарейка — выдумка или реальность? А универсальная программа-переводчик, способная расшифровать даже древние языки? Как насчет ИИ, работающего на заводе?

Десяток лет назад даже VR-шлемы казались предметом научной фантастики. И это несмотря на то, что первое подобное устройство собрал полвека назад, в 1968 году, гарвардский профессор Иван Сазерленд. Сегодня VR-технологии — часть повседневности: их используют и геймеры, и ученые, и инженеры.

Например, специалисты Троицкого института инновационных и термоядерных исследований разработали VR-модель прототипа токамака реакторных технологий. В модели термоядерный реактор можно собирать и разбирать, как конструктор, изучать его работу и вносить изменения в конструкцию. На ней же будут обучать эксплуатирующий персонал. В такой среде можно отработать реакцию на самые экстремальные ситуации, довести до автоматизма порядок действий.

А главное — модель поможет в разработке экспериментальной установки нового поколения, того самого токамака с реакторными технологиями. Эскизное проектирование и разработка диагностического оборудования уже идет полным ходом.

Проверь свою интуицию на технологии будущего — пройди тест Росатома.
This media is not supported in your browser
VIEW IN TELEGRAM
💥 Плазменный тороид — портал для входа в другое измерение ⚡️

#физика #gif #электродинамика #магнетизм #опыты

💡 Physics.Math.Code
Media is too big
VIEW IN TELEGRAM
Геометрия и топология (1984)

В математике геометрия и топология являются общим термином для исторически различных дисциплин геометрии и топологии, поскольку общие рамки позволяют единообразно манипулировать обеими дисциплинами, что наиболее заметно в локальных и глобальных теоремах римановой геометрии и результатах, таких как теорема Гаусса–Бонне и теория Черна–Вейля. #научные_фильмы #геометрия #математика #видеоуроки

✏️ „Надо признаться, что попытка трактовать естественные проблемы без геометрии есть попытка сделать невозможное.“ — Галилео Галилей итальянский физик, механик, астроном, философ и математик XVII в. 1564–1642

💡 Physics.Math.Code
📙 Негауссовские процессы в радиотехнике [1998] Шелухин О.И.

💾 Скачать книгу

Оглавление:
1. Статистические характеристики и математические модели негауссовских процессов и каналов связи.
2. Обнаружение и распознавание сигналов в негауссовских помехах.
3. Нелинейная фильтрация и демодуляция сообщений при негауссовском характере измерительной информации и помех.
4. Нелинейная фильтрация при аддитивно-мультипликативных помехах.
5. Синтез и анализ дискриминаторов следящих измерителей.
6. Устойчивость и адаптация алгоритмов нелинейной обработки негауссовских процессов.
#радиофизика #радиотехника #математика #теория_сигналов

💡 Physics.Math.Code
Негауссовские_процессы_в_радиотехнике_1998_Шелухин_О_И_.djvu
6.1 MB
📙 Негауссовские процессы в радиотехнике [1998] Шелухин О.И.

Рассматриваются методы математического описания и статистические модели негауссовских информационных процессов и помех, специфических для радиотехнических приложений. Исследуются вопросы синтеза и анализа оптимальных и квазиоптимальных алгоритмов обнаружения и распознавания, нелинейной марковской фильтрации и демодуляции информационных негауссовских сигналов на фоне аддитивных и мультипликативных помех с произвольным распределением. Излагаются методы адаптации и устойчивости (робастности) алгоритмов обработки негауссовских процессов в условиях априорной неопределенности. Прикладные результаты получены для задач передачи цифровых и аналоговых сигналов в системах спутниковой связи и подвижных систем радиосвязи. Для инженерно-технических работников, студентов и аспирантов.

Оглавление:
1. Статистические характеристики и математические модели негауссовских процессов и каналов связи.
2. Обнаружение и распознавание сигналов в негауссовских помехах.
3. Нелинейная фильтрация и демодуляция сообщений при негауссовском характере измерительной информации и помех.
4. Нелинейная фильтрация при аддитивно-мультипликативных помехах.
5. Синтез и анализ дискриминаторов следящих измерителей.
6. Устойчивость и адаптация алгоритмов нелинейной обработки негауссовских процессов. #радиофизика #радиотехника #математика #теория_сигналов

💡 Physics.Math.Code
📗 Непрерывный вейвлетный анализ и его приложения [2003] Короновский А.А., Храмов А.Е.

💾 Скачать книгу

✍️ Вейвлет-анализ представляет собой особый тип линейного преобразования функций из некоторого достаточно широкого класса. Базис собственных функций, по которому проводится разложение, обладает многими специальными свойствами. В частности, он позволяет разбивать данные, функции или операторы на составляющие с разными частотами, каждая из которых затем изучается с разрешением, подходящим масштабу. Прототипы этой техники появились одновременно в чистой математике (формула обращения Кальдерона), в квантовой физике (когерентные состояния для (ax+b)-группы), в цифровой обработке сигналов (КЗ фильтры с точным восстановлением Смита и Барнвела), в анализе сейсмических данных (вейвлеты Морле).

▪️ Пара слов о вейвлетах и их применении

▪️ Вейвлет-сжатие на пальцах

▪️ Вейвлет – анализ. Основы

▪️ Теория и практика вейвлет-преобразования - что почитать

#радиофизика #теория_сигналов #математика #вейвлеты #численные_методы

💡 Physics.Math.Code
Непрерывный_вейвлетный_анализ_и_его_приложения_2003_Короновский.zip
4.8 MB
📗 Непрерывный вейвлетный анализ и его приложения [2003] Короновский А.А., Храмов А.Е.

В книге рассматривается такой современный метод анализа временных рядов, как непрерывный вейвлетный анализ. Излагаются общие сведения и понятия вейвлетного преобразования, иатематический аппарат, методика численной реализации вейвлетного преобразования, вейвлетный анализ случайных процессов, способы применения вейвлетного преобразования к анализу нелинейных систем различной природы. Затрагиваются аспекты, связанные с исследованием пространственно-распределенных систем, и, соответственно, структур, возникающих как во времени, так и пространстве, с помощью вейвлетного анализа. Для научных работников, занимающихся цифровой обработкой данных и анализом динамических систем, а также полезна читателям других специальностей, имеющим дело с анализом сложных процессов, протекающих в системах самой различной природы. #радиофизика #теория_сигналов #математика #вейвлеты #численные_методы

✏️ Математик — это человек, который не только сразу же схватывает чужую мысль, но также видит, из какой логической ошибки она вытекает. — Хельмут Нар (1931 – 1990) — Helmar Nahr — немецкий математик, социолог и экономист.

💡 Physics.Math.Code
📘 Прикладная нелинейная оптика [1982] Дмитриев В.Г. Тарасов Л.В.

💾 Скачать книгу

Для научных работников и инженеров, работающих в области лазерной техники, нелинейной оптики и смежных областях; может использоваться также преподавателями и студентами вузов, аспирантами.

✏️ Современная физика ничего не изменила в таких великих классических дисциплинах, как, например, механика, оптика и теплота. Решительной трансформации подверглось лишь представление о неизведанных доселе областях, преждевременно сформировавшееся из познания лишь некоторых частей света. Эта концепция, однако, всегда является решающей для дальнейшего хода исследований. — Вернер Гейзенберг

#оптика #нелинейная_оптика #физика #квантовая_физика

💡 Physics.Math.Code