Physics.Math.Code
140K subscribers
5.15K photos
1.95K videos
5.79K files
4.33K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
Download Telegram
Media is too big
VIEW IN TELEGRAM
Симистор (симметричный триодный тиристор, триак) — полупроводниковый прибор, разновидность тиристоров, используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ).

Особенность симистора — способность проводить ток в обеих полярностях, в отличие от тиристора, который работает только в одном направлении. Это позволяет использовать симисторы в цепях переменного тока без дополнительной схемы мостового выпрямления. Симистор имеет три вывода: анод, катод и управляющий электрод (Gate).

Симисторы могут быть подключены к нагрузке различными способами, в зависимости от требований схемы:
▪️ Последовательное подключение — включается последовательно с нагрузкой, наиболее распространено для управления мощностью ламп, двигателей или нагревателей.
▪️ Мостовая схема — используется в мостовой конфигурации для управления мощностью в более сложных приложениях.

Принцип работы: Процесс включения симистора начинается с подачи импульса на управляющий электрод (Gate). Когда напряжение достигает определённого порогового значения, структура симистора переходит из состояния блокировки в состояние проводимости. В это время через прибор начинает течь ток.

Особенности симисторов: Способность к самозадержке — после срабатывания (включения) симистор остаётся в проводящем состоянии до тех пор, пока ток через него не упадёт ниже определённого уровня. Этот принцип работает, даже если сигнал на управляющем электроде пропадёт.

Симисторы используются в различных устройствах, например:
▪️ регуляторы скорости электродвигателей;
▪️ преобразователи энергии;
▪️ световые регуляторы.

Существует два основных направления использования симисторов: для включения/выключения коммутации нагрузки в цепях переменного тока и для регулирования мощности, передаваемой в нагрузку путём изменения напряжения. #научные_фильмы #физика #электродинамика #электричество #магнетизм #science #видеоуроки #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7429🔥135👻1
📚 Как решать задачи [20+ книг]

💾 Скачать книги

🔵 Физика – это основа всего естествознания, она необходима для изучения химии, биологии, географии, геологии, астрономии. В свою очередь для понимания самой физики большие познания в других естественных дисциплинах не требуются, однако нужны знания и навыки из такой науки, как математика. Считается, что физика на сегодня является самой развитой и формализованной (то есть описываемой с помощью математических инструментов) естественной наукой.

💡 Сделаем подборку книг о том как научиться решать физико-математические задачи? В комментариях обязательно напишите какие книги по физике ваши любимые!

#подборка_книг #физика #техника #physics #задачи #наука #science

💡 Physics.Math.Code // @physics_lib
43👍25🔥13🤩3😍1
📚 Как решать задачи [20+ книг].7z
147.2 MB
📚 Как решать задачи [20+ книг]

📗 Как научиться решать задачи. Книга для учащихся старших классов средней школы [1989] Фридман
📕 Как решают нестандартные задачи [2008] Канель-Белов, Ковальджи
📘 Учимся решать задачи по геометрии [1996] Полонский, Рабинович, Якир
📙 Как решать задачу [1961] Пойа Дж.
📒 Как решать задачи по физике [1967] Сперанский Н.М
📗 Как решать задачи по теоретической механике [2008] Антонов
📔 Как решать задачи по физике [1998] Гринченко
📓 Траблшутинг: Как решать нерешаемые задачи, посмотрев на проблему с другой стороны [2018] Фаер
📕 Как решать задачи по математике на вступительных экзаменах [1990] Мельников, Сергеев
📘 Математика и правдоподобные рассуждения [1953] Пойа Дж.
📙 Как решать задачи по физике, и почему их надо решать [2009] Варгин
📒Учитесь решать задачи по физике [1997] Ефашкин, Романовская, Тарасова
📗 Экспериментальные физические задачи на смекалку [1974] Ланге
📔 Физические парадоксы, софизмы и занимательные задачи [1967] Ланге
📓 Сто задач по физике

и
другие... #подборка_книг #физика #математика #геометрия #наука #physics #math #science

💡 Physics.Math.Code // @physics_lib
1👍6420❤‍🔥9🔥4😍3🤯2🤩2👻2😢1
☕️ Утренняя задачка по физике для разминки наших инженеров

Попробуйте подумать самостоятельно и написать ваш вариант ответа в комментариях.

#задачи #механика #физика #physics #science #наука #разбор_задач

💡 Physics.Math.Code // @physics_lib
👍48🔥1712🤯5🤔3😱1
🎲 Шриниваса Рамануджан родился ровно 138 лет назад

Г.Х. Харди однажды оценил математиков по шкале от 1 до 100 на предмет чистого таланта. Харди поставил себе 25 баллов, его коллега Литтлвуд — 30, Гилберт — 80, а Рамануджан — высший балл — 100.

📝 Бесконечно повторяющиеся радикалы Рамануджана

👳‍♀️ Рамануджан — гений, опередивший свое время (фильм)

#математика #факты #math #science #алгебра #наука

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
67👍27🔥19❤‍🔥3🤓3🤩2
This media is not supported in your browser
VIEW IN TELEGRAM
🎈 Резиновый шарик в тепловизоре 🔥

Что же происходит в резине, когда мы её растягиваем? В обычном состоянии цепочки полимера находятся в слегка изогнутом, свернутом состоянии. Это объясняется тем, что звенья и атомы не закреплены жёстко как на каком-то каркасе или проволоке – происходит их тепловое движение и конформация полимера, то есть его пространственная форма и положение цепочек непрерывно меняются. Более того, сами цепи способны соударяться друг о друга. Когда мы начинаем растягивать резину, цепочки начинают вытягиваться вдоль одной линии. А, значит, число соударений цепочек друг о друга увеличивается. Что приводит к росту скорости молекул и увеличению внутренней энергии – резина нагревается. Как только мы прекращаем растягивать резину, тепловое движение начинает стремиться вновь «запутать» цепочки, позволить им стать изогнутыми и сократить их длину. В результате резина сжимается. Такие «расслабленные» цепочки, с которых сняли приложенное напряжение, наоборот будут терять энергию: из-за этого резина будет охлаждаться.

Чтобы убедиться в этом, вы можете проделать опыт самостоятельно: вам нужно всего лишь приложить, например, резиновую ленту (подойдут даже канцелярские резинки) к губам в момент растяжения и затем отпустить её, позволив сжаться. Таким образом вы сможете почувствовать разницу в температуре растягиваемого участка.

💥 Зная молекулярный механизм, как работают резиновые ленты, можно пользоваться таким лайфхаком: нагретая резина может поднять больший груз! При большей температуре натянутые цепочки будут подвергаться более сильной бомбардировке соседних молекул, а значит, будут стремиться сильнее сжаться обратно. Поэтому в целом резиновую ленту будет сложнее растянуть и ее грузоподъемность увеличится! #физика #механика #видеоуроки #science #термодинамика #МКТ #physics #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
👍5820🔥18🤯13🙈2❤‍🔥1
Media is too big
VIEW IN TELEGRAM
🖥 Внутри центрального процессора. Полный демонтаж процессора IBM Power Processor

Внутри центрального процессора (CPU) компьютера находятся несколько компонентов, которые выполняют разные функции. Среди них — ядро, блок управления (CU), арифметико-логическое устройство (ALU) и кэш-память.

▪️Ядро: Базовый элемент CPU, выполняет вычисления, обрабатывает команды и управляет потоками данных. Некоторые функции ядра:
— Обработка команд — ядро считывает и интерпретирует инструкции из оперативной памяти или кэша, преобразуя их в действия.
— Арифметические и логические операции — основа всех вычислений.
— Управление потоками данных — ядро получает данные из оперативной памяти и передаёт результаты обратно.
— Взаимодействие с другими ядрами — в многоядерных процессорах ядра могут обмениваться данными через общую память и координировать выполнение задач.

▪️Блок управления (CU): Управляет работой процессора с помощью электрических сигналов. Некоторые функции CU:
— Декодирует инструкцию — понимает, что должна делать инструкция (например, арифметическая операция, доступ к памяти, операция ввода-вывода).
— Переводит инструкцию в сигналы, которые могут управлять другими частями процессора для выполнения требуемой операции.

▪️Арифметико-логическое устройство (ALU): Выполняет арифметические и логические операции с двоичными числами. Современные процессоры могут содержать несколько ALU, что позволяет выполнять несколько операций одновременно. Некоторые функции ALU:
— Арифметические операции — сложение, вычитание, умножение, деление.
— Логические операции — AND, OR, NOT, XOR (исключающее OR).

▪️Кэш-память: Высокоскоростная память, расположенная в близости к ядрам процессора. Основная задача — хранение данных, к которым процессор обращается наиболее часто или которые могут потребоваться в ближайшее время. Функции кэш-памяти:
— Сокращение времени доступа к данным — процессор может обращаться к кешу, не тратя время на обращение к более медленной оперативной памяти.
— Повышение эффективности многозадачности — наличие кеша позволяет быстрее переключаться между задачами и обрабатывать их параллельно, уменьшая задержки при обращении к данным.
— Оптимизация сложных вычислений — при работе с тяжёлыми вычислительными задачами (например, 3D-рендерингом, обработкой больших данных или машинным обучением) кэш-память помогает сократить время обработки за счёт минимизации обращений к оперативной памяти.

💽 Самые массовые HDD Seagate ST-225

🔬 Практическая задача по электронике для наших подписчиков

📚 3 книги по модернизации и ремонту компьютерного железа

📘 Основы компьютерной электроники [2019] Фомин

#железо #электроника #hdd #hardware #схемотехника #physics #видеоуроки #comuter_science #science

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
11🔥8530👍15🤔32🤯1💯1🤓1
Media is too big
VIEW IN TELEGRAM
🚀 Физика в опытах | Выстрел на вращающейся платформе [НИЯУ МИФИ | Гервидс В.И.]
Тема видео: выстрел на вращающейся платформе


Сила Кориолиса — одна из сил инерции, введённая для учёта влияния вращательного движения подвижной системы координат на относительное движение материальной точки. Названа по имени французского учёного Гюстава Гаспара Кориолиса, впервые описавшего её в статье, опубликованной в 1835 году.

Сила Кориолиса проявляется при движении в направлении под углом к оси вращения. Например, это сила, которую надо приложить к массивному телу, находящемуся на поверхности вращающегося диска, чтобы оно двигалось от центра диска и находилось на одном радиусе. Сила Кориолиса равна произведению массы материальной точки на её ускорение Кориолиса и направлена противоположно этому ускорению. Важно: сила Кориолиса не связана с реальным взаимодействием тела с другими телами, а её свойства определяются только обстоятельствами кинематического характера, обусловленными выбором конкретной неинерциальной системы отсчёта. В связи с этим о силе Кориолиса говорят, что она не является физической силой, и называют её псевдосилой.

На вращающейся Земле сила Кориолиса вызывает отклонение от вертикали свободно падающего тела к востоку (в первом приближении). Тела, движущиеся вдоль поверхности Земли, под действием силы Кориолиса стремятся изменить направление своего движения: повернуть в Северном полушарии вправо, а в Южном — влево. Эти изменения особенно заметны при высоких скоростях движения (например, при дальних полётах ракет и снарядов) или при продолжительных движениях (вызывают, например, подмывы берегов рек). В технике сила Кориолиса учитывается в теории гироскопов, турбин и т. п.

Сила Кориолиса : Fₖ = - 2 ⋅ [ ω × vᵣ ]
ω — угловая скорость вращения неинерциальной системы отсчёта
vᵣ — скорость движения рассматриваемой материальной точки в этой системе отсчёта
Квадратные скобки [..] — операция векторного произведения


#физика #механика #кинематика #опыты #эксперименты #physics #задачи #physics #mechanics #science #наука

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
66👍49🔥11🤩2😍21
This media is not supported in your browser
VIEW IN TELEGRAM
🪨 Является ли данная конструкция прочной и устойчивой при нагрузке сверху с точки зрения физики?

Как известно, сводчатые потолки более прочные и могут выдерживать даже сильные землетрясения. Эти слова подтверждают сохранившиеся практически в идеальном состоянии памятники архитектуры, которые насчитывают не одну сотню лет. И самое главное, что такого рода конструкции возводились из специального кирпича высококлассными зодчими без единой капли какого-либо раствора. Современные же методы строительства радиусных перекрытий позволяют создавать настоящие шедевры, глядя на которые даже не верится, что такое чудо возможно. Как показывает практика, именно сводчатые или радиусные потолки и перекрытия не только эстетичней выглядят, но и более долговечны, что доказывают старинные храмы, арочные мосты и другие постройки, дожившие до наших дней.

Если в старые времена такого рода конструкции возводились из специального кирпича и без применения связующего раствора, то сейчас благодаря инновационным стройматериалам появилась возможность создавать и вовсе уникальные сооружения. В это сложно поверить, но теперешние каменщики не используют никаких особых приспособлений или арматуры – только кирпич, форма и специальный раствор.

🏛 Отличная иллюстрация явления резонанса

⚙️ Забытые технологии. Как возводили мосты в средневековье

🪵 Арочный каменный мост за 19 дней

Выравнивания опор Эйфелевой башни

📙 Почему мы не проваливаемся сквозь пол [1971] Гордон Джеймс Эдвард
📘 Конструкции, или почему не ломаются вещи [1980] Гордон Джеймс Эдвард


#physics #science #сопротивление_материалов #механика #физика #архитектура

💡 Physics.Math.Code // @physics_lib
👍6129🔥14🤯41🗿1🆒1
📚 Гравитация [3 тома] Мизнер Ч., Торн К., Уилер Дж

💾 Скачать книги

Монография выдающихся американских физиков посвящена изложению физических основ, современного математического аппарата и важнейших достижений теории тяготения Эйнштейна. Также один из авторов работал над фильмом "Интерстеллар".
Рекомендуем всем! Поделись с другом-инженером хорошими книгами.
Издатель: У. Х. Фримен. Издательство Принстонского университета.

Книга по-прежнему пользуется авторитетом в физическом сообществе и получает в основном положительные отзывы, но некоторые критикуют её за объём и стиль изложения.
«Гравитация» — настолько выдающаяся книга по теории относительности, что инициалы её авторов — М. Т. В. — могут использоваться в других книгах по теории относительности без каких-либо пояснений.

Спустя более тридцати лет после публикации «Гравитация» по-прежнему остаётся наиболее полным трактатом по общей теории относительности. На его 1300 страницах можно найти авторитетное и исчерпывающее обсуждение практически любой темы, связанной с этой областью. В книге также содержится обширная библиография со ссылками на первоисточники. Написанная тремя выдающимися учёными XX века, она задала тон многим последующим текстам по этой теме, в том числе и этому. — Джеймс Хартл

Книга, которая стала источником знаний как минимум для двух поколений исследователей в области гравитационной физики. Эта всеобъемлющая и энциклопедическая книга написана своеобразным языком, который вам либо понравится, либо нет. — Шон М. Кэрролл

#гравитация #физика #механика #наука #science #physics #космология #астрономия

💡 Physics.Math.Code // @physics_lib
100🔥39👍138🤯3🤩2❤‍🔥1😍1🆒1