Physics.Math.Code
138K subscribers
5.12K photos
1.83K videos
5.78K files
4.22K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i

№ 5535336463
Download Telegram
📙 Обработка нечеткой информации в системах принятия решений [1989] Борисов, Алексеев

💾 Скачать книгу

Обработка нечёткой информации — процесс, при котором системы работают с данными, которые не имеют чёткого значения, но могут быть представлены в виде нечётких множеств или лингвистических переменных. Для обработки такой информации используются методы на основе нечёткой логики — формы многозначной логики, производной от теории нечётких множеств.

Обработка нечёткой информации включает несколько этапов, которые называются процессом нечёткого вывода:
1. Фаззификация — преобразование входных данных в значения лингвистических переменных.
2. Нечёткий вывод — применение процедур на множестве продукционных правил для формирования выходных лингвистических значений.
3. Дефаззификация — преобразование выведенных значений в точные значения для действий или решений.

Некоторые методы обработки нечёткой информации:
▪️На основе алгоритмов нечёткого вывода. Например, механизм Мамдани, который включает фаззификацию, нечётный вывод, композицию и дефаззификацию.
▪️С использованием функций принадлежности. Они количественно определяют степень принадлежности элемента к нечётному множеству и могут принимать различные формы (линейная, экспоненциальная, гауссова).
▪️С применением интервального анализа. Позволяет работать с величинами, для которых задан лишь интервал допустимых или возможных значений.
#физика #автоматизация #нечеткая_логика #математика #алгоритмы #искусственный_интеллект #math #science #AI #наука

💡 Physics.Math.Code // @physics_lib
Обработка_нечеткой_информации_в_системах_принятия_решений_1989_Борисов.djvu
13.3 MB
📙 Обработка нечеткой информации в системах принятия решений [1989] Борисов, Алексеев

Монография посвящена вопросам обработки нечеткой информации в системах принятия решений, создаваемых на базе универсальных ЭВМ. Данные системы применяются при управлении технологическими объектами, в САПР, технической диагностике и разрабатываются как составная часть экспертных систем. Одним из источников информации в таких системах являются специалисты, выражающие свои знания с помощью нечетких понятий и отношений естественного языка.Описываются теоретические принципы, методы и прикладные алгоритмы анализа решений в условиях риска и нечеткой исходной информации на основе лингвистического подхода. Излагаются основные элементы нечеткой математики в моделях принятия решений. Особое внимание уделяется применению аксиоматической теории полезности. Предлагаются методы формирования лингвистических лотерей, позволяющие обосновать правила вычисления и упорядочения лингвистических оценок ожидаемой полезности альтернатив.Рассматриваются методы оценивания полезности в условиях нечеткой информации. Приводятся модели принятия решений на основе безусловных и условных нечетких свидетельств. Применение нечетких свидетельств для описания информации лица, принимающего решения, позволяет оценивать ее качество и производить коррекцию.Описывается программное обеспечение обработки нечеткой информации в системах принятия решений. Приводятся примеры решения организационно-технических задач при нечеткой исходной информации.Для научных работников — специалистов в области систем автоматизированного проектирования, автоматизации управления, принятия решений, экспертных систем.

Обработка нечёткой информации применяется в различных областях, например:

▪️Системы управления. Контроллеры с нечёткой логикой определяют оптимальные точки переключения передач на основе скорости, положения дроссельной заслонки и других факторов.
▪️Экспертные системы. Используют нечёткую логику для имитации способностей человека-эксперта к принятию решений. Например, системы медицинской диагностики оценивают симптомы и результаты анализов, предоставляя диагноз, учитывающий неопределённость состояния здоровья.
▪️Обработка изображений. Нечёткая логика помогает определить границы, уменьшить шум и улучшить качество изображения, учитывая неоднозначность данных.
▪️Системы поддержки принятия решений. Принимают обоснованные решения на основе неполной или неопределённой информации, например, оценивают риск и доходность вариантов инвестирования в неопределённых рыночных условиях.

#физика #автоматизация #нечеткая_логика #математика #алгоритмы #искусственный_интеллект #math #science #AI #наука

💡 Physics.Math.Code // @physics_lib
Сборник_практических_задач_по_математике_1971_Сорокин.djvu
2.5 MB
📔 Сборник практических задач по математике [1971] Сорокин

Настоящий «Сборник практических задач по математике» ставит своей целью помочь учителям начальных классов (особенно учителям, начинающим работу) в подборе для каждого класса по каждой теме задач с практическим содержанием (помимо тех, какие имеются в принятых учебниках по математике) и дать полезные советы по методике решения таких задач.

Задачи, помещенные в настоящем «Сборнике», заставят ученика действовать: рисовать, чертить, вырезывать, измерять отрезки, находить площади, добывать необходимые для решения задач сведения, составлять планы, сметы, диаграммы, производить денежные расчеты и т.п. Обо всём этом и не только в книге Сборник практических задач по математике (П. И. Сорокин).
#математика #math #задачи #разборы_задач #алгебра #геометрия

💡 Physics.Math.Code // @physics_lib
📕 N-угольники [1973] Бахман, Шмидт

💾 Скачать книгу

Глава 1. Циклические классы n-угольников.
Глава 2. Циклические отображения n-угольников.
Глава 3. Об изобарических циклических отображениях.
Глава 4. Отображения усреднения.
Глава 5. Идемпотентные элементы и булевы алгебры.
Глава 6. Основная теорема о циклических классах.
Глава 7. Идемпотент-вложение. Факторкольцо кольца главных идеалов.
Глава 8. Булевы алгебры n-угольников (теория I).
Глава 9. Булевы алгебры n-угольников (теория II).
Глава 10. Рациональные компоненты n-угольника.
Глава 11. Комплексные компоненты n-угольника.
Глава 12. Вещественные компоненты n-угольника.

#математика #math #геометрия #графика #наука #дискретная_математика #графы #физика #physics

💡 Physics.Math.Code // @physics_lib
N-угольники [1973] Бахман, Шмидт.zip
7.5 MB
📕 N-угольники [1973] Бахман, Шмидт

В этой книге на вполне элементарном материале, начинающемся с простейших геометрических истин (середины сторон произвольного четырехугольника являются вершинами параллелограмма и т. д.), развита весьма изящная теория, устанавливающая зачастую совершенно неожиданные связи между геометрией и важными концепциями и понятиями современной алгебры. Большое достоинство книги — сопровождающие изложение задачи, которые позволяют читателю все время контролировать степень овладения материалом.

Книга рассчитана на любителей математики самых разных категорий, начиная от старшеклассников, интересующихся этой наукой (например, учащихся школ с математической специализацией).

#математика #math #геометрия #графика #наука #дискретная_математика #графы #физика #physics

💡 Physics.Math.Code // @physics_lib
🔴🔵Задача «никакие три точки не лежат на одной прямой» — одна из задач комбинаторной геометрии, состоящая в нахождении количества точек, которые можно расположить на решётке n×n так, чтобы никакие три точки не находились на одной прямой.

Брасс, Мозер и Пах назвали задачу «одним из самых старых и интенсивно изучаемых геометрических вопросов, касающихся точек решётки»

#математика #math #геометрия #графика #наука #дискретная_математика #графы #задачи

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
#️⃣ Обычный поиск VS Квантовый поиск

В контексте квантовых вычислений квантовый поиск по графу — это квантовый алгоритм для поиска помеченного узла в графе. Концепция квантового блуждания основана на классических случайных блужданиях, в которых участник случайным образом перемещается по графу или решётке. В классическом случайном блуждании положение участника можно описать с помощью распределения вероятностей по различным узлам графа. В квантовом блуждании, с другой стороны, участник представлен квантовым состоянием, которое может находиться в суперпозиции нескольких местоположений одновременно.

Поисковые алгоритмы, основанные на квантовых прогулках, могут найти применение в различных областях, включая оптимизацию, машинное обучение, криптографию и сетевой анализ. Эффективность и вероятность успеха квантового поиска сильно зависят от структуры пространства поиска. В целом, алгоритмы квантового поиска обеспечивают асимптотическое квадратичное ускорение, аналогичное алгоритму Гровера. Одна из первых работ по применению квантового блуждания к задачам поиска была предложена Нилом Шенви, Джулией Кемпе и К. Биргиттой Уэйли. #математика #math #геометрия #графика #наука #алгоритмы #дискретная_математика #графы #задачи #программирование

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Сборник_задач_по_математике_для_втузов_1986_1990_Ефимов_А_В.zip
117.8 MB
📚 Сборник задач по математике для втузов [1986-1990] Ефимов А.В.
Издательство: Наука


Второе и четвертое издание известного сборника задач по математике для втузов, охватывающего множество разделов высшей математики.

📕 Книга 1. Линейная алгебра и основы математического анализа.
Часть 1. Содержит задачи по линейной алгебре, аналитической геометрии, а также общей алгебре.

📘 Книга 2. Специальные разделы математического анализа.
Часть 2. Содержит задачи по основам математического анализа, а также дифференциальному и интегральному исчислениям функций одной и нескольких переменных, дифференциальным уравнениям и кратным интегралам.

📙 Книга 3. Теория вероятностей и математическая статистика.
Часть 3. Содержит задачи по специальным разделам математического анализа, которые в различных наборах и объемах изучаются в технических вузах и университетах. Сюда включены такие разделы, как векторный анализ, ряды и их применение, элементы теории функций комплексной переменной, операционное исчисление, интегральные уравнения, уравнения в частных производных, а также методы оптимизации.

📗 Книга 4. Методы оптимизации. Уравнения в частных производных. Интегральные уравнения.
Часть 4. Содержит задачи по специальным курсам математики: теории вероятностей и математической статистике. Во всех разделах приводятся необходимые теоретические сведения. Все задачи снабжены ответами, а наиболее сложные - решениями.

Краткие теоретические сведения, снабженные большим количеством разобранных примеров, позволяют использовать сборник для всех видов обучения.
Для студентов высших технических учебных заведений. Под редакцией Ефимова А.В., Поспелова А.С.
#математика #подборка_книг #math #высшая_математика #математический_анализ #алгебра #calculus

💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
Красота параметрических кривых

Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр. Параметризация – метод представления кривой, поверхности или объекта в пространстве с помощью одной или нескольких переменных, называемых параметрами. Параметризация позволяет описывать траекторию объекта на кривой или поверхности, изменяя значение параметра. Это гибкий подход для изучения и анализа форм и движений объектов.

#математика #mathematics #animation #math #геометрия #geometry #gif

💡 Physics.Math.Code // @physics_lib
📙 Венгерские математические олимпиады [1976] Кюршак Й., Хайош Д.

💾 Скачать книгу

В издании собраны задачи, которые предлагались на Венгерских математических олимпиадах с 1894 по 1974 год. К составлению задач привлекались лучшие математические силы страны. Книга рассчитана на учащихся старших классов, абитуриентов, студентов и всех, кто серьёзно увлечён математикой.

Йожеф Кюршак — венгерский математик, основатель теории оценок.
Дьёрдь Ха́йош — венгерский математик и популяризатор. Член Венгерской академии наук.
#math #математика #задачи #разбор_задач #головоломки #физика #геометрия #олимпиады

💡 Physics.Math.Code // @physics_lib