Physics.Math.Code
137K subscribers
5.11K photos
1.81K videos
5.78K files
4.2K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i

№ 5535336463
Download Telegram
📙 Обработка нечеткой информации в системах принятия решений [1989] Борисов, Алексеев

💾 Скачать книгу

Обработка нечёткой информации — процесс, при котором системы работают с данными, которые не имеют чёткого значения, но могут быть представлены в виде нечётких множеств или лингвистических переменных. Для обработки такой информации используются методы на основе нечёткой логики — формы многозначной логики, производной от теории нечётких множеств.

Обработка нечёткой информации включает несколько этапов, которые называются процессом нечёткого вывода:
1. Фаззификация — преобразование входных данных в значения лингвистических переменных.
2. Нечёткий вывод — применение процедур на множестве продукционных правил для формирования выходных лингвистических значений.
3. Дефаззификация — преобразование выведенных значений в точные значения для действий или решений.

Некоторые методы обработки нечёткой информации:
▪️На основе алгоритмов нечёткого вывода. Например, механизм Мамдани, который включает фаззификацию, нечётный вывод, композицию и дефаззификацию.
▪️С использованием функций принадлежности. Они количественно определяют степень принадлежности элемента к нечётному множеству и могут принимать различные формы (линейная, экспоненциальная, гауссова).
▪️С применением интервального анализа. Позволяет работать с величинами, для которых задан лишь интервал допустимых или возможных значений.
#физика #автоматизация #нечеткая_логика #математика #алгоритмы #искусственный_интеллект #math #science #AI #наука

💡 Physics.Math.Code // @physics_lib
Обработка_нечеткой_информации_в_системах_принятия_решений_1989_Борисов.djvu
13.3 MB
📙 Обработка нечеткой информации в системах принятия решений [1989] Борисов, Алексеев

Монография посвящена вопросам обработки нечеткой информации в системах принятия решений, создаваемых на базе универсальных ЭВМ. Данные системы применяются при управлении технологическими объектами, в САПР, технической диагностике и разрабатываются как составная часть экспертных систем. Одним из источников информации в таких системах являются специалисты, выражающие свои знания с помощью нечетких понятий и отношений естественного языка.Описываются теоретические принципы, методы и прикладные алгоритмы анализа решений в условиях риска и нечеткой исходной информации на основе лингвистического подхода. Излагаются основные элементы нечеткой математики в моделях принятия решений. Особое внимание уделяется применению аксиоматической теории полезности. Предлагаются методы формирования лингвистических лотерей, позволяющие обосновать правила вычисления и упорядочения лингвистических оценок ожидаемой полезности альтернатив.Рассматриваются методы оценивания полезности в условиях нечеткой информации. Приводятся модели принятия решений на основе безусловных и условных нечетких свидетельств. Применение нечетких свидетельств для описания информации лица, принимающего решения, позволяет оценивать ее качество и производить коррекцию.Описывается программное обеспечение обработки нечеткой информации в системах принятия решений. Приводятся примеры решения организационно-технических задач при нечеткой исходной информации.Для научных работников — специалистов в области систем автоматизированного проектирования, автоматизации управления, принятия решений, экспертных систем.

Обработка нечёткой информации применяется в различных областях, например:

▪️Системы управления. Контроллеры с нечёткой логикой определяют оптимальные точки переключения передач на основе скорости, положения дроссельной заслонки и других факторов.
▪️Экспертные системы. Используют нечёткую логику для имитации способностей человека-эксперта к принятию решений. Например, системы медицинской диагностики оценивают симптомы и результаты анализов, предоставляя диагноз, учитывающий неопределённость состояния здоровья.
▪️Обработка изображений. Нечёткая логика помогает определить границы, уменьшить шум и улучшить качество изображения, учитывая неоднозначность данных.
▪️Системы поддержки принятия решений. Принимают обоснованные решения на основе неполной или неопределённой информации, например, оценивают риск и доходность вариантов инвестирования в неопределённых рыночных условиях.

#физика #автоматизация #нечеткая_логика #математика #алгоритмы #искусственный_интеллект #math #science #AI #наука

💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
🔊 Узоры стоячих волн — фигуры Хладни 〰️

В данном эксперименте мы наблюдаем визуализацию звука по конфигурации стоячих волн, в узлы которых попадают кристаллики соли, вырисовывая картину колебания. С увеличением частоты геометрические узоры из соли меняют свою форму и становятся более сложными.

Предлагаем посмотреть на современную реализацию эксперимента, который повторяет «открытие» немецкого ученого Эрнеста Хладни. Он исследовал влияние вибраций разных частот на механические поверхности, водя смычком вдоль края пластины (пластины Хладни), покрытой мукой, заметил как изменяется ее форма. Свои наблюдения изложил в книге «Теория Звука». В 1960-х Ханс Дженни расширил работы Хладни, используя различные жидкости и электронные усилители для генерирования различных звуковых частот. Он же заодно и ввел термин «киматика».

Если вы пропустите обычную синусоидную волну через тарелку с водой, то вы увидите узор прямо на воде. В зависимости от частоты волн будут появляться различные изображения пульсаций. Чем выше частота, тем более сложными становятся узоры. Эти формы являются повторяющимися и отнюдь не случайными. Вибрация организует материю в сложные формы, получаемые из простых и повторяющихся волн. #механика #физика #наука #physics #колебания #science #волны #physics

CYMATICS׃ Science Vs Music — Nigel Stanford

Воздействие звуковых волн различных частот на соль

💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
🖥 Юрий Рыбников. Наука и образование как средство зомбирования жителей Земли

Гость — Рыбников Юрий Степанович, «учёный», предложивший периодическую систему электроатомов Равноправной Устойчивой Симметрии (РУС) землян, методику построения электроструктур электроатомов, соединившую физику, химию, электричество, счёт РУСов (математику) в единую систему Знаний. Полностью отрицает современную теорию строения атома и множество других современных научных представлений.

Гениальная сдержанность ведущего.

#электродинамика #квантоваяфизика #физика #наука #physics #колебания #science #волны #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🪄 В математике, физике и искусстве узоры в стиле муар — это увеличенные интерференционные узоры, которые могут возникать в случае, когда частично непрозрачный линейный узор с прозрачными промежутками накладывается на другой подобный узор. Чтобы появился муаровый интерференционный узор, два узора должны быть не полностью идентичными, а смещёнными, повёрнутыми или иметь немного разную частоту.

Узоры в виде муара появляются во многих ситуациях. При печати напечатанный узор из точек может искажать изображение. В телевидении и цифровой фотографии узор на фотографируемом объекте может искажать форму световых датчиков, создавая нежелательные артефакты.

В физике его проявлением является интерференция волн, которую можно наблюдать в эксперименте с двумя щелями и феномене биений в акустике.

Муар-узоры часто являются артефактомизображений, созданных с помощью различных методов цифрового изображения и компьютерной графики, например, при сканированииполутонового изображения или трассировке лучей на клетчатой плоскости (последнее является частным случаем сглаживания из-за недостаточной дискретизации мелкого регулярного рисунка). Это может быть преодолено при отображении текстур с помощью mipmapping и анизотропной фильтрации.

⚙️ Смотреть ещё видео

#физика #оптика #опыты #physics #эксперименты #наука #science #видеоуроки #графика #моделирование #волны

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
👩‍💻Самая большая в мире вакуумная камера. В этой камере проводили эксперимент, который подтвердил теорию Галилея относительно ускорения свободного падения. Суть опыта: с одинаковой высоты в один момент времени отпустили шар для боулинга и несколько перьев. В замедленной съёмке показали, что оба объекта ускоряются одинаково и достигают плоскости Земли одновременно. Это произошло потому, что на них не действует сопротивление воздуха, так как объекты находились в вакууме.

Space Power Facility (сокр. SPF) — крупнейшая в мире термальная вакуумная камера, созданная НАСА в 1969 году. Расположена на станции Плам-Брук, неподалёку от Сандаски. Станция Плам-Брук, в свою очередь, является частью Исследовательского центра Гленна, расположенного в Кливленде. Изначально предназначалась для ядерно-электрических испытаний в условиях вакуума, однако испытания были отменены, а камера законсервирована. В дальнейшем камера использовалась для проведения испытаний двигательных установок космических аппаратов и их систем. Кроме того, в данной камере проводились испытания работоспособности защитных систем приземления в условиях, приближенных к марсианским, для марсоходов Mars Pathfinder и проектах серии Mars Exploration Rover.

Размеры SPF составляют более 30 метров в диаметре и 40 метров - в высоту. По своему устройству SPF представляет собой огромный алюминиевый контейнер, заключённый в бетонный купол. Алюминиевый контейнер состоит из плотных рядов пластин из алюминиевого сплава Type 5083, подогнанных друг к другу таким образом, чтобы не пропускать воздух. #физика #механика #опыты #physics #эксперименты #наука #science #видеоуроки #кинематика #моделирование

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
📈📉Опыты по физике: Плавление, кристаллизация, испарение, конденсация

Плавление и испарение — признаки изменения агрегатного состояния кристаллического вещества. Эти процессы связаны с переходом вещества из твёрдого состояния в жидкое (плавление) или из жидкого состояния в газообразное (испарение).

▪️ Плавление — переход кристаллического вещества из твёрдого состояния в жидкое. Плавление происходит при определённой температуре — температуре плавления. Каждое вещество имеет свою температуру плавления. Сопровождается поглощением энергии, так как к веществу необходимо подводить теплоту. Внутренняя энергия вещества увеличивается. Температура вещества не изменяется до тех пор, пока всё оно не расплавится.

▪️ Испарение — переход вещества из жидкого состояния в газообразное, который происходит с поверхности жидкости. Происходит при любой температуре. Скорость испарения зависит от природы жидкости, температуры, площади поверхности и наличия или отсутствия движения воздуха над поверхностью. Улетевшие молекулы уносят с собой энергию, поэтому при испарении происходит уменьшение температуры жидкости (охлаждение).

▪️ Кристаллизация — процесс образования кристаллов из газов, растворов, расплавов или стёкол. Также кристаллизацией называют образование кристаллов с данной структурой из кристаллов иной структуры (полиморфные превращения) или переход из жидкого состояния в твёрдое кристаллическое. Кристаллизация начинается при охлаждении жидкости до определённой температуры — температуры кристаллизации, которая равна температуре плавления. Во время процесса температура не меняется. Зарождение центров кристаллизации — образование кластеров с упорядоченностью, характерной для кристалла. Рост кристаллов — увеличение размера частиц за счёт присоединения атомов или молекул из жидкости. #физика #термодинамика #мкт #опыты #эксперименты #physics #видеоуроки #научные_фильмы #science

Изохорный процесс

🔥 Термостат

💧 Капля воды падающая на горячий металл 💥в Slow motion

💧 Эффект Лейденфроста

🚀 Что будет, если добавить жидкий газ в бутылку с водой

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
⚡️ Физические основы радиопередачи [1989] Киностудия Леннаучфильм

Плодотворной научной почвой для изобретения беспроволочного телеграфа А.С. Поповым были работы великих физиков с мировым именем. История радио и радиовещания. Изобретение электронных ламп и многое другое. Физические основы радиопередачи заключаются в использовании радиоволн — электромагнитных волн, которые свободно распространяются в пространстве. Информация, передаваемая по радиоканалу, кодируется в параметрах несущей волны: амплитуде, частоте или фазе.

Этапы передачи сигнала:
▪️ Формирование несущего сигнала в радиопередатчике. Это высокочастотные колебания определённой частоты.
▪️ Наложение полезного сигнала (звуков, изображений и т. д.) на несущий сигнал — модуляция.
▪️ Излучение модулированного сигнала антенной в пространство в виде радиоволн.
▪️ Приём на приёмной стороне. Радиоволны наводят модулированный сигнал в приёмной антенне, он поступает в радиоприёмник.
▪️ Выделение сигнала с нужной несущей частотой с помощью системы фильтров, затем — выделение полезного сигнала детектором.

Некоторые виды модуляции:
▪️ Амплитудная — изменение амплитуды несущего сигнала в соответствии с полезным сигналом.
▪️ Частотная — изменение частоты несущего сигнала.
▪️ Фазовая — изменение фазы несущего сигнала.

#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
💥 Лазерная резка — технология резки и раскроя материалов, использующая лазер высокой мощности и обычно применяемая на промышленных производственных линиях. Сфокусированный лазерный луч, обычно управляемый компьютером, обеспечивает высокую концентрацию энергии и позволяет разрезать практически любые материалы независимо от их теплофизических свойств. В процессе резки, под воздействием лазерного луча материал разрезаемого участка плавится, возгорается, испаряется или выдувается струей газа. При этом можно получить узкие резы с минимальной зоной термического влияния. Лазерная резка отличается отсутствием механического воздействия на обрабатываемый материал, возникают минимальные деформации, как временные в процессе резки, так и остаточные после полного остывания. Вследствие этого лазерную резку, даже легкодеформируемых и нежестких заготовок и деталей, можно осуществлять с высокой степенью точности. Благодаря большой мощности лазерного излучения обеспечивается высокая производительность процесса в сочетании с высоким качеством поверхностей реза. Легкое и сравнительно простое управление лазерным излучением позволяет осуществлять лазерную резку по сложному контуру плоских и объемных деталей и заготовок с высокой степенью автоматизации процесса.

Для лазерной резки металлов применяют технологические установки на основе твердотельных, волоконных лазеров и газовых CO2-лазеров, работающих как в непрерывном, так и в импульсно-периодическом режимах излучения. Промышленное применение газо-лазерной резки с каждым годом увеличивается, но этот процесс не может полностью заменить традиционные способы разделения металлов. В сопоставлении со многими из применяемых на производстве установок стоимость лазерного оборудования для резки ещё достаточно высока, хотя в последнее время наметилась тенденция к её снижению. В связи с этим процесс лазерной резки становится эффективным только при условии обоснованного и разумного выбора области применения, когда использование традиционных способов трудоемко или вообще невозможно.

Лучше всего обрабатываются металлы с низкой теплопроводностью, так как в них энергия лазера концентрируется в меньшем объеме металла, и наоборот, при лазерной резке металлов с высокой теплопроводностью может образоваться грат. #лазер #техника #science #физика #physics #производство

💡 Physics.Math.Code
// @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
⛓️‍💥 Ломание палки на бумажных кольцах ⭕️

Суть эксперимента: взять три бумажных кольца, сцепленных друг с другом, разместить их параллельно. В крайние кольца положить деревянную рейку и нанести сильный удар стальным прутом. В результате дерево разломится, а бумажные кольца, гораздо менее прочные, останутся полностью целы.

Объяснение: во время быстрого удара сила воздействия не успевает передаться кольцам из-за инертности палки, поэтому кольца остаются целы.

#физика #видеоуроки #олимпиады #problems #задачи #опыты #эксперименты #механика #сопромат #кинематика #science

💡 Physics.Math.Code // @physics_lib