Необыкновенная_физика_обыкновенных_явлений_1986_1987_Суорц.zip
8.8 MB
📚 «Необыкновенная физика обыкновенных явлений» — книга Кл. Э. Суорца (перевод с английского — Е. И. Бутикова и А. С. Кондратьева). Вышла в двух томах [1986–1987]
В книге дано современное изложение начал физики. Каждая графа начинается разделом "Знакомство с явлениями", в котором читателю предлагается проделать простейшие опыты и наблюдения с помощью легкодоступных подручных средств. Подобранные примеры с минимальным использованием математических средств позволяют развить физическую интуицию и умение применять знание физики в практической деятельности. В русском издании книга разделена на два тома. В первый том вошли главы, посвященные механике и термодинамике. Во второй том вошли главы, посвященные волнам, оптике, электромагнетизму, физике микромира. Для учащихся общеобразовательных и профессиональной школ, а также для лиц, занимающихся самообразованием.
▪️ Каждая глава начинается разделом «Знакомство с явлениями», в котором читателю предлагается проделать простейшие опыты и наблюдения с помощью легкодоступных подручных средств.
▪️ Изложение теоретического материала с минимальным использованием математических средств.
▪️ Текст сопровождается многочисленными рисунками, схемами, диаграммами и графиками, а зачастую — лаконичными простыми оценками и расчётами.
#физика #physics #science #подборка_книг #наука #опыты #задачи
💡 Physics.Math.Code // @physics_lib
В книге дано современное изложение начал физики. Каждая графа начинается разделом "Знакомство с явлениями", в котором читателю предлагается проделать простейшие опыты и наблюдения с помощью легкодоступных подручных средств. Подобранные примеры с минимальным использованием математических средств позволяют развить физическую интуицию и умение применять знание физики в практической деятельности. В русском издании книга разделена на два тома. В первый том вошли главы, посвященные механике и термодинамике. Во второй том вошли главы, посвященные волнам, оптике, электромагнетизму, физике микромира. Для учащихся общеобразовательных и профессиональной школ, а также для лиц, занимающихся самообразованием.
▪️ Каждая глава начинается разделом «Знакомство с явлениями», в котором читателю предлагается проделать простейшие опыты и наблюдения с помощью легкодоступных подручных средств.
▪️ Изложение теоретического материала с минимальным использованием математических средств.
▪️ Текст сопровождается многочисленными рисунками, схемами, диаграммами и графиками, а зачастую — лаконичными простыми оценками и расчётами.
#физика #physics #science #подборка_книг #наука #опыты #задачи
💡 Physics.Math.Code // @physics_lib
👍42❤21🔥19🤩1
Media is too big
VIEW IN TELEGRAM
▪️ Сложение колебаний динамика и прямолинейного потока вода, в результате которого получается бегущая волна около синусоидальной формы. Однако волна в некоторые моменты времени как будто замирает в воздухе. Связано это со стробоскопическим эффектом: частота камеры иногда точно совпадает с частотой колебаний динамика, в результате подвижная струя кажется неподвижной. Стробоскопический эффект при съёмке заключается в иллюзии неподвижности быстро движущихся тел.
▪️Неодимовый магнит может использоваться для сбора железной стружки благодаря высокой силе притяжения, которая характерна для этого типа магнитов. Стружка, особенно железосодержащая, притягивается к магниту, что позволяет улавливать её в разных областях. Магнит притягивает ферромагнитные частицы (железо, сталь). Цветные металлы и неметаллические загрязнения остаются незамеченными. Для очистки моторного масла от мелкой металлической стружки, которая образуется из-за трения деталей двигателя. Магнит размещают снаружи корпуса масляного фильтра, в области прохождения масла. Стружка притягивается и удерживается, предотвращая её дальнейшее циркулирование по системе.
▪️Уменьшение объема тела тесно связано с уменьшением его момента инерции J = (2/5) × m × r² (для сферы). Закон сохранения момента импульса гласит, что если момент внешних сил, действующих на механическую систему относительно центра оси, равен нулю, то момент импульса системы относительно этого центра с течением времени не изменяется. Если момент импульса L = J ×ω сохраняется, то при уменьшении момента инерции J (сжатие проволочного каркаса), частота вращения будет увеличиваться.
▪️ Рёбра жёсткости (складки) способны сделать бумагу твёрдой — они придают листу прочность, который не выдерживает в форме ровного прямого листа. Это происходит, если лист сложить так, чтобы получились рёбра жёсткости. Например: Сложить лист «гармошкой» — создаёт большое количество рёбер жёсткости. Рёбра жёсткости направляют деформацию «по сложному» пути. Например, если лист согнули под углом 90 градусов, напряжения, которые возникают в материале, распространяются не в продольной плоскости, а в поперечной. В этой плоскости согнуть лист сложнее, так как нужно разорвать межмолекулярные связи.
▪️Гироскопический эффект и прецессия — понятия, связанные с поведением вращающихся объектов, в частности гироскопов. Эти термины объясняют, как ось вращения гироскопа сохраняет направление в пространстве, а при внешнем воздействии ось не меняет направление сразу, а начинает плавно описывать движение. Гироскопический эффект — это способность быстро вращающегося тела удерживать своё положение в пространстве в плоскости своего вращения. Прецессия — это движение оси вращения гироскопа вокруг другой оси. Сила тяжести действует на гироскоп, создавая момент силы, который пытается заставить его опрокинуться. Однако гироскоп прецессирует, и ось его вращения остаётся направленной вверх. Если ось быстро вращающегося гироскопа слегка отклонить от вертикали, то она начнёт прецессировать вокруг вертикального положения, то есть совершать вращательное движение по поверхности конуса.
▪️Когда один шар сталкивается с цепочкой из нескольких одинаковых шаров, налетающий шар обменивается скоростью со вторым шаром, второй — с третьим и так далее. В результате все шары, кроме последнего, будут находиться в покое, а последний шар отскочит ровно с той же самой скоростью, с которой двигался налетающий шар. Это происходит благодаря закону сохранения импульса, согласно которому суммарный импульс системы тел до взаимодействия равен суммарному импульсу этой системы тел после взаимодействия.
#физика #physics #science #видеоуроки #наука #опыты #эксперименты #механика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍58🔥19❤15🤯1🤩1🗿1👾1
📚 Учебники по физике (профильный уровень) [5 томов] Автор: Мякишев
💾 Скачать книги
Мякишев Геннадий Яковлевич (20 марта 1926, Москва — 25 декабря 2003, Москва) — советский и российский учёный и педагог, специалист в области общей физики, автор школьных учебников по физике. Работал в МГУ в должности доцента. #подборка_книг #физика #physics #science
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
Мякишев Геннадий Яковлевич (20 марта 1926, Москва — 25 декабря 2003, Москва) — советский и российский учёный и педагог, специалист в области общей физики, автор школьных учебников по физике. Работал в МГУ в должности доцента. #подборка_книг #физика #physics #science
💡 Physics.Math.Code // @physics_lib
🔥33👍17❤9😍2⚡1🤩1
📚_Учебники_по_физике_профильный_уровень_5_томов_Автор_Мякишев.zip
27.4 MB
📚 Учебники по физике (профильный уровень) 5 томов Мякишева
📕 Физика. Механика 2010 Мякишев
📗 Физика. Молекулярная физика. Термодинамика 2010 Мякишев Синяков
📙 Физика. Электродинамика 2010 Мякишев
📒 Физика. Колебания и волны 2010 Мякишев Синяков
📘 Физика. Оптика. Квантовая физика 2002 Мякишев Синяков
Здесь все очень подробно. Если вы никуда не торопитесь, получаете удовольствие от процесса размеренного вдумчивого, глубокого и всестороннего погружения в мир физики - это ваш вариант. Если вы захотите все же несколько ускорить процесс, то я порекомендовал бы профильный двухтомник под редакцией А.А.Пинского, возможно, в тандеме с многотомником Мякишева.
Что касается базовых понятий механики и электричества, то они изложены в основном так же, как и в двухтомнике этого автора (кое-в-чем даже хуже). Однако объем материала отличается несравнимо: здесь есть практически все, что нужно школьнику для углубленного изучения физики. #физика #physics #подборка_книг
💡 Physics.Math.Code // @physics_lib
📕 Физика. Механика 2010 Мякишев
📗 Физика. Молекулярная физика. Термодинамика 2010 Мякишев Синяков
📙 Физика. Электродинамика 2010 Мякишев
📒 Физика. Колебания и волны 2010 Мякишев Синяков
📘 Физика. Оптика. Квантовая физика 2002 Мякишев Синяков
Здесь все очень подробно. Если вы никуда не торопитесь, получаете удовольствие от процесса размеренного вдумчивого, глубокого и всестороннего погружения в мир физики - это ваш вариант. Если вы захотите все же несколько ускорить процесс, то я порекомендовал бы профильный двухтомник под редакцией А.А.Пинского, возможно, в тандеме с многотомником Мякишева.
Что касается базовых понятий механики и электричества, то они изложены в основном так же, как и в двухтомнике этого автора (кое-в-чем даже хуже). Однако объем материала отличается несравнимо: здесь есть практически все, что нужно школьнику для углубленного изучения физики. #физика #physics #подборка_книг
💡 Physics.Math.Code // @physics_lib
🔥42❤24👍17⚡2💯1🆒1
This media is not supported in your browser
VIEW IN TELEGRAM
⭕️ Самодельный лазерный уровень 🔴
В последнее время все чаще стала появляться техника, работающая с применением лазерной технологии, например, принтеры, медицинское оборудование, лабораторные приборы и т.д. А знаете ли Вы, что физическая основа лазерного излучения была предсказана еще Альбертом Эйнштейном в 1916 году? Но до изобретения первого лазера было еще далеко. После многочисленных исследований ученых-физиков только в 1960 году Теодор Мейман представил миру первый лазер, излучающий волну за счет искусственного рубина. Изначально луч проецировался в инфракрасном диапазоне, а чуть позже была применена технология окрашивания, и излучение приобрело красный цвет. Это открытие считается одним из самых значимых, совершенных в XX веке. Лазерные технологии стали применяться в космической, военной, промышленной сфере, а в повседневную жизнь человека они вошли только в XXI веке, но сразу охватили практически все сферы деятельности, в том числе, строительство и ремонт.
Около 20 лет назад лазерное излучение стало применяться в измерительных приборах – нивелирах. Это в значительной степени облегчило проведение строительных, отделочных и монтажных работ. Ведь для нанесения разметки не нужно делать сложные замеры, достаточно спроецировать на объект лазерный луч и получить идеально ровную линию. #лазер #техника #science #физика #physics #производство
🔥 Наплавка гребного винта лазерной сваркой
💥 Первый лазер
💥 Лазерная очистка поверхности старой монеты
💥 Лазерная резка
🔦 Лазерная сварка с разной формой луча
💥 Лазерное скальпирование микросхемы
💡 Physics.Math.Code // @physics_lib
В последнее время все чаще стала появляться техника, работающая с применением лазерной технологии, например, принтеры, медицинское оборудование, лабораторные приборы и т.д. А знаете ли Вы, что физическая основа лазерного излучения была предсказана еще Альбертом Эйнштейном в 1916 году? Но до изобретения первого лазера было еще далеко. После многочисленных исследований ученых-физиков только в 1960 году Теодор Мейман представил миру первый лазер, излучающий волну за счет искусственного рубина. Изначально луч проецировался в инфракрасном диапазоне, а чуть позже была применена технология окрашивания, и излучение приобрело красный цвет. Это открытие считается одним из самых значимых, совершенных в XX веке. Лазерные технологии стали применяться в космической, военной, промышленной сфере, а в повседневную жизнь человека они вошли только в XXI веке, но сразу охватили практически все сферы деятельности, в том числе, строительство и ремонт.
Около 20 лет назад лазерное излучение стало применяться в измерительных приборах – нивелирах. Это в значительной степени облегчило проведение строительных, отделочных и монтажных работ. Ведь для нанесения разметки не нужно делать сложные замеры, достаточно спроецировать на объект лазерный луч и получить идеально ровную линию. #лазер #техника #science #физика #physics #производство
🔥 Наплавка гребного винта лазерной сваркой
💥 Лазерная очистка поверхности старой монеты
🔦 Лазерная сварка с разной формой луча
💥 Лазерное скальпирование микросхемы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥127👍49❤29🙈11❤🔥6✍3🤯1😨1🆒1
Media is too big
VIEW IN TELEGRAM
💧 Скоростная съемка делает кинетику жидкости более статичной и пригодной для рассмотрения красивых геометрических форм.
#физика #геометрия #интересное #physics #gif #гидродинамика
💡 Physics.Math.Code // @physics_lib
#физика #геометрия #интересное #physics #gif #гидродинамика
💡 Physics.Math.Code // @physics_lib
👍149🔥81❤34😍14❤🔥7😱2
This media is not supported in your browser
VIEW IN TELEGRAM
🔊 Ультразвуковая пластина (мембрана, пьезоизлучатель) — ключевой элемент увлажнителя воздуха. Она преобразует обычную воду в мельчайший туман, который увлажняет воздух в помещении.
Принцип действия: на пластину подают высокочастотное напряжение. Под его воздействием мембрана колеблется, в водяном слое появляются волны пониженного и повышенного давления, чередующиеся между собой. В зоне низкого давления жидкость «вскипает» при невысокой температуре, происходит выброс водяного аэрозоля.
▪️Генерация ультразвуковых волн (обратный пьезоэлектрический эффект). На пластину подают электрические колебания от генератора, и под их действием она расширяется и сжимается по толщине. Это вызывает колебания, которые излучают ультразвуковые волны.
▪️Приём ультразвуковых волн (прямой пьезоэлектрический эффект). Под действием ультразвуковой волны пластина испытывает сжатия и растяжения, и в результате прямого пьезоэффекта между обкладками возникает электрическое напряжение, пропорциональное акустическому давлению волны.
Для генерации продольных колебаний используют деформацию растяжения-сжатия, для генерации поперечных — сдвиговую деформацию. Преобразователь с такой пластиной прижимают к поверхности изделия через слой контактной жидкости, в результате в изделии возникают продольные волны, направленные под прямым углом к поверхности.
Пьезоэлектрический эффект — явление, при котором под воздействием механического напряжения или деформации в кристалле возникает электрическая поляризация, величина и знак которой зависят от направления и значения приложенного напряжения. Собственная частота колебаний в пьезопластине пропорциональна скорости звука в материале пластины и её толщине. Чем тоньше пластина, тем выше её собственная частота. На практике под влиянием конструктивных элементов пьезоэлектрического преобразователя, непосредственно контактирующих с пьезопластиной, собственная частота немного изменяется. Частоту, которую возбуждает преобразователь, называют рабочей частотой. #физика #опыты #колебания #волны #пьезодинамика #physics #gif #гидродинамика
💡 Physics.Math.Code // @physics_lib
Принцип действия: на пластину подают высокочастотное напряжение. Под его воздействием мембрана колеблется, в водяном слое появляются волны пониженного и повышенного давления, чередующиеся между собой. В зоне низкого давления жидкость «вскипает» при невысокой температуре, происходит выброс водяного аэрозоля.
▪️Генерация ультразвуковых волн (обратный пьезоэлектрический эффект). На пластину подают электрические колебания от генератора, и под их действием она расширяется и сжимается по толщине. Это вызывает колебания, которые излучают ультразвуковые волны.
▪️Приём ультразвуковых волн (прямой пьезоэлектрический эффект). Под действием ультразвуковой волны пластина испытывает сжатия и растяжения, и в результате прямого пьезоэффекта между обкладками возникает электрическое напряжение, пропорциональное акустическому давлению волны.
Для генерации продольных колебаний используют деформацию растяжения-сжатия, для генерации поперечных — сдвиговую деформацию. Преобразователь с такой пластиной прижимают к поверхности изделия через слой контактной жидкости, в результате в изделии возникают продольные волны, направленные под прямым углом к поверхности.
Пьезоэлектрический эффект — явление, при котором под воздействием механического напряжения или деформации в кристалле возникает электрическая поляризация, величина и знак которой зависят от направления и значения приложенного напряжения. Собственная частота колебаний в пьезопластине пропорциональна скорости звука в материале пластины и её толщине. Чем тоньше пластина, тем выше её собственная частота. На практике под влиянием конструктивных элементов пьезоэлектрического преобразователя, непосредственно контактирующих с пьезопластиной, собственная частота немного изменяется. Частоту, которую возбуждает преобразователь, называют рабочей частотой. #физика #опыты #колебания #волны #пьезодинамика #physics #gif #гидродинамика
💡 Physics.Math.Code // @physics_lib
👍92❤38🔥25🤯4⚡2
📗 Методика решения задач по физике в средней школе [1987] Каменецкий С.Е., Орехов В.П.
💾 Скачать книгу
Аудитория: Книга предназначена в первую очередь для:
▪️ Учителей физики (как начинающих, так и опытных).
▪️ Студентов педагогических вузов (физических специальностей).
▪️ Репетиторов, стремящихся понять глубинные причины ошибок учеников.
▪️ Увлеченных старшеклассников, которые хотят не просто "натаскаться" на задачи, а понять логику и физическую суть их решения.
Ключевые достоинства и особенности:
1. Методический, а не задачниковый подход. Это главное отличие от большинства других книг. Авторы не просто дают задачи и ответы, а скрупулезно анализируют:
— Типичные ошибки учащихся: Почему ученик делает ошибку в конкретном типе задач? Какое неверное представление или пробел в знаниях за этим стоит?
— Классификацию задач: Задачи группируются не по темам ("кинематика", "динамика"), а по методам решения (координатный, графический, метод применения законов сохранения и т.д.). Это учит обобщению и переносу навыков.
— Формирование общего алгоритма: Авторы показывают, как подвести ученика к выработке общего плана действий при решении любой задачи: анализ условия, перевод в физическую модель, выбор законов, составление уравнений, анализ решения.
2. Акцент на физической стороне явления. В отличие от чисто математизированных сборников, здесь постоянно подчеркивается важность понимания физической сути. Авторы учат "видеть" за формулами и уравнениями реальные процессы, что критически важно для успешного решения нестандартных задач.
3. Система упражнений. Для каждого рассматриваемого метода предлагается система заданий: от простых, иллюстрирующих метод, до более сложных. Много внимания уделяется "задачам-ловушкам", которые провоцируют типичные ошибки, и их разбору.
4. Психологические аспекты. Авторы учитывают возрастные и психологические особенности школьников, что делает методические рекомендации практичными и реализуемыми в реальном учебном процессе.
Другие особенности книги:
▪️ Время издания. Это самый очевидный "минус" для современного читателя. В книге нет задач, связанных с современными технологиями (полупроводники, квантовая физика подробно не разбирается), отсутствуют цветные иллюстрации, графики выполнены в старой манере. Стиль изложения может показаться несколько академичным.
⚠️ Важно: Это НЕ недостаток методики. Законы Ньютона, термодинамика или электромагнетизм не изменились. Методика обучения их применению, изложенная в книге, остается верной.
▪️ Отсутствие готовых "решебников". Книга не предназначена для списывания. В ней даются методические указания, разборы ключевых моментов, но не полные решения всех задач. Это пособие для обучения преподавателя, как учить, а не для бездумного списывания учеником.
▪️Высокий уровень сложности. Некоторые разделы и рекомендации рассчитаны на физико-математические классы или на углубленное изучение. Для базового уровня книга может показаться избыточной.
☕️ Задонать на кофе: ВТБ:
📚 Учебники по физике (профильный уровень) 5 томов Мякишева
📚 «Необыкновенная физика обыкновенных явлений»
📚 Гравитация [3 тома] Мизнер Ч., Торн К., Уилер Дж
#физика #physics #подборка_книг #задачи #наука #разбор_задач
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Аудитория: Книга предназначена в первую очередь для:
▪️ Учителей физики (как начинающих, так и опытных).
▪️ Студентов педагогических вузов (физических специальностей).
▪️ Репетиторов, стремящихся понять глубинные причины ошибок учеников.
▪️ Увлеченных старшеклассников, которые хотят не просто "натаскаться" на задачи, а понять логику и физическую суть их решения.
Ключевые достоинства и особенности:
1. Методический, а не задачниковый подход. Это главное отличие от большинства других книг. Авторы не просто дают задачи и ответы, а скрупулезно анализируют:
— Типичные ошибки учащихся: Почему ученик делает ошибку в конкретном типе задач? Какое неверное представление или пробел в знаниях за этим стоит?
— Классификацию задач: Задачи группируются не по темам ("кинематика", "динамика"), а по методам решения (координатный, графический, метод применения законов сохранения и т.д.). Это учит обобщению и переносу навыков.
— Формирование общего алгоритма: Авторы показывают, как подвести ученика к выработке общего плана действий при решении любой задачи: анализ условия, перевод в физическую модель, выбор законов, составление уравнений, анализ решения.
2. Акцент на физической стороне явления. В отличие от чисто математизированных сборников, здесь постоянно подчеркивается важность понимания физической сути. Авторы учат "видеть" за формулами и уравнениями реальные процессы, что критически важно для успешного решения нестандартных задач.
3. Система упражнений. Для каждого рассматриваемого метода предлагается система заданий: от простых, иллюстрирующих метод, до более сложных. Много внимания уделяется "задачам-ловушкам", которые провоцируют типичные ошибки, и их разбору.
4. Психологические аспекты. Авторы учитывают возрастные и психологические особенности школьников, что делает методические рекомендации практичными и реализуемыми в реальном учебном процессе.
Другие особенности книги:
▪️ Время издания. Это самый очевидный "минус" для современного читателя. В книге нет задач, связанных с современными технологиями (полупроводники, квантовая физика подробно не разбирается), отсутствуют цветные иллюстрации, графики выполнены в старой манере. Стиль изложения может показаться несколько академичным.
▪️ Отсутствие готовых "решебников". Книга не предназначена для списывания. В ней даются методические указания, разборы ключевых моментов, но не полные решения всех задач. Это пособие для обучения преподавателя, как учить, а не для бездумного списывания учеником.
▪️Высокий уровень сложности. Некоторые разделы и рекомендации рассчитаны на физико-математические классы или на углубленное изучение. Для базового уровня книга может показаться избыточной.
☕️ Задонать на кофе: ВТБ:
+79616572047
(СБП) 📚 Учебники по физике (профильный уровень) 5 томов Мякишева
📚 «Необыкновенная физика обыкновенных явлений»
📚 Гравитация [3 тома] Мизнер Ч., Торн К., Уилер Дж
#физика #physics #подборка_книг #задачи #наука #разбор_задач
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❤32🔥30👍13🤩2😍1🌚1🗿1
Методика_решения_задач_по_физике_в_средней_школе.zip
12 MB
📗 Методика решения задач по физике в средней школе [1987] Каменецкий С.Е., Орехов В.П.
В книге изложены общие приемы и методы решения основных типовых физических задач на I и II ступенях обучения физике в средней школе в соответствии с действующей программой, стабильными учебниками и задачниками. Большое внимание уделено экспериментальным задачам и задачам с политехническим содержанием. Приведен подробный анализ условий задач и даны подробные решения задач по всем темам школьного курса физики.
Каменецкий и Орехов создали не просто книгу, а золотой фонд методической литературы по физике. Это глубокий, вдумчивый анализ процесса решения задач, который помогает учителю работать не над следствием (ошибкой), а над причиной (пробелом в понимании).
Рекомендация: Эту книгу обязательно стоит иметь в своей библиотеке каждому учителю физики. Для старшеклассника она будет полезна, если он действительно увлечен предметом и хочет научиться мыслить, а не угадывать формулы. Для подготовки к ЕГЭ/ОГЭ в ее чистом виде может не хватить "прикладных" задач формата экзамена, но она обеспечивает непревзойденную базу, на которую легко лягут любые экзаменационные задания.
Оценка: 5/5 (как классическому методическому пособию, не имеющему аналогов по глубине подхода). #физика #physics #подборка_книг #задачи #наука #разбор_задач
💡 Physics.Math.Code // @physics_lib
В книге изложены общие приемы и методы решения основных типовых физических задач на I и II ступенях обучения физике в средней школе в соответствии с действующей программой, стабильными учебниками и задачниками. Большое внимание уделено экспериментальным задачам и задачам с политехническим содержанием. Приведен подробный анализ условий задач и даны подробные решения задач по всем темам школьного курса физики.
Каменецкий и Орехов создали не просто книгу, а золотой фонд методической литературы по физике. Это глубокий, вдумчивый анализ процесса решения задач, который помогает учителю работать не над следствием (ошибкой), а над причиной (пробелом в понимании).
Рекомендация: Эту книгу обязательно стоит иметь в своей библиотеке каждому учителю физики. Для старшеклассника она будет полезна, если он действительно увлечен предметом и хочет научиться мыслить, а не угадывать формулы. Для подготовки к ЕГЭ/ОГЭ в ее чистом виде может не хватить "прикладных" задач формата экзамена, но она обеспечивает непревзойденную базу, на которую легко лягут любые экзаменационные задания.
Оценка: 5/5 (как классическому методическому пособию, не имеющему аналогов по глубине подхода). #физика #physics #подборка_книг #задачи #наука #разбор_задач
💡 Physics.Math.Code // @physics_lib
👍53❤16🔥10🤩2😍1💯1
Media is too big
VIEW IN TELEGRAM
Самой яркой и наглядной демонстрацией эффекта является резка (фактически — откалывание) стекла обыкновенными ножницами в воде. Таким образом получится вырезать из стекла практически любую фигуру. В физикеэффект Ребиндера — это снижение твёрдости и пластичности материала, в частности металлов, под воздействием поверхностно-активной плёнки. Эффект назван в честь советского учёного Петра Александровича Ребиндера, который впервые описал этот эффект в 1928 году. Предлагаемое объяснение этого эффекта заключается в разрушении поверхностных оксидных плёнок и снижении поверхностной энергии с помощью поверхностно-активных веществ. Этот эффект особенно важен при механической обработке, поскольку смазочные материалы снижают силу резания.
Эффект Ребиндера
#физика #адсорбция #physics #science #химия #видеоуроки #наука #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍95🔥32❤13🤔5❤🔥4✍2🤯2😱2