Data Science by ODS.ai 🦜
51.1K subscribers
359 photos
32 videos
7 files
1.51K links
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @haarrp
Download Telegram
​​Learning to Simulate Dynamic Environments with GameGAN

#Nvidia designed a GAN that able to recreate games without any game engine. To train it, authors of the model use experience collected by reinforcement learning and other techniques.

GameGAN successfully reconstructed all mechanics of #Pacman game. Moreover, the trained model can generate new mazes that have never appeared in the original game. It can even replace background (static objects) and foreground (dynamic objects) with different images!

As the authors say, applying reinforcement learning algorithms to real world tasks requires accurate simulation of that task. Currently designing such simulations is expensive and time-consuming. Using neural networks instead of hand-written simulations may help to solve these problems.

Paper: https://cdn.arstechnica.net/wp-content/uploads/2020/05/Nvidia_GameGAN_Research.pdf
Blog: https://blogs.nvidia.com/blog/2020/05/22/gamegan-research-pacman-anniversary/
Github Page: https://nv-tlabs.github.io/gameGAN/

#GAN #RL
​​Thorough analysis of recent Tesla Model 3 accident and warning to autopilot users

Olga Uskova shared insights of her #CognitivePilot team members on #Tesla accident.

Highlights:

- Please don’t use autopilot on highways. They are still buggy and in development
- Obvious GTA-emulator training might have not been done to reach satisfactory results
- Tesla might have not been updating stereo cams + radar cooperation logic due to termination of contract with Mobileye EyeQ3

Analysis: https://www.facebook.com/uskova.oa/videos/804398560090702/
Article: https://www.thedrive.com/news/33789/autopilot-blamed-for-teslas-crash-into-overturned-truck

#autonomousdriving #selfdriving #RL #cars
How Tesla Truck design affects design of all autonomous vehicles

#design #selfdriving #autonomousvehicle #rl #scania
​​Salesforce opensourced AI-framework for economic RL

AI Economist is capable of learning dynamic tax policies that optimize equality along with productivity in simulated economies, outperforming alternative tax systems.

Github: https://github.com/salesforce/ai-economist
Blog post with results: https://blog.einstein.ai/the-ai-economist/
Blog post with release: https://blog.einstein.ai/the-ai-economist-moonshot/

#Salesforce #gym #RL #economics #AIEconomics #animalcrossing #AIEconomist
​​learning to summarize from human feedback
by openai

the authors collect a high-quality dataset of human comparisons between summaries, train a model to predict the human-preferred summary & use that model as a reward function to fine-tune a summarization policy using reinforcement learning. they apply this method to a version of the tl;dr dataset of reddit posts & find that their models significantly outperform both human reference summaries & much larger models fine-tuned with supervised learning alone

the researchers focused on english text summarization, as it’s a challenging problem where the notion of what makes a "good summary" is difficult to capture without human input

these models also transfer to cnn/dm news articles, producing summaries nearly as good as the human reference without any news-specific fine-tuning. furthermore, they conduct extensive analyses to understand the human feedback dataset & fine-tuned models. they establish that their reward model generalizes to a new dataset & that optimizing their reward model results in better summaries than optimizing rouge according to humans


blogpost: https://openai.com/blog/learning-to-summarize-with-human-feedback/
paper: https://arxiv.org/abs/2009.01325
code: https://github.com/openai/summarize-from-feedback

#nlp #rl #summarize
​​Ford is reported to work on a two-leg human-shaped delivery robot

#RL #bostondynamics #delivery #autonomousrobots
​​QVMix and QVMix-Max: Extending the Deep Quality-Value Family of Algorithms to Cooperative Multi-Agent Reinforcement Learning

Paper extends the Deep Quality-Value (DQV) family of al-
gorithms to multi-agent  reinforcement learning and outperforms #SOTA

ArXiV: https://arxiv.org/abs/2012.12062

#DQV #RL #Starcraft
This media is not supported in your browser
VIEW IN TELEGRAM
Habitat 2.0: Training home assistant robots with faster simulation and new benchmarks

Facebook released a new simulation platform to train robots in. Yeah, virtual robots in virtual environment, which can be a real space replica. This work brings us closer to domestic use of assistive robots.

Project website: https://ai.facebook.com/blog/habitat-20-training-home-assistant-robots-with-faster-simulation-and-new-benchmarks
Paper: https://ai.facebook.com/research/publications/habitat-2.0-training-home-assistants-to-rearrange-their-habitat

#Facebook #DigitalTwin #VR #RL #assistiverobots
Mava: a scalable, research framework for multi-agent reinforcement learning

The framework integrates with popular MARL environments such as PettingZoo, SMAC, RoboCup, OpenSpiel, Flatland , as well as a few custom environments.

Mava includes distributed implementations of multi-agent versions of ddpg, d4pg, dqn, ppo, as well as DIAL, VDN and QMIX.

ArXiV: https://arxiv.org/pdf/2107.01460.pdf
GitHub: https://github.com/instadeepai/Mava

#MARL #RL #dl
Acquisition of Chess Knowledge in AlphaZero

69-pages paper of analysis how #AlphaZero plays chess. TLDR: lots of concepts self-learned by neural network can be mapped to human concepts.

This means that generally speaking we can train neural networks to do some task and then learn something from them. Opposite is also true: we might imagine teaching neural networks some human concepts in order to maek them more efficient.

Post: https://en.chessbase.com/post/acquisition-of-chess-knowledge-in-alphazero
Paper: https://arxiv.org/pdf/2111.09259.pdf

#RL
🦜 Hi!

We are the first Telegram Data Science channel.


Channel was started as a collection of notable papers, news and releases shared for the members of Open Data Science (ODS) community. Through the years of just keeping the thing going we grew to an independent online Media supporting principles of Free and Open access to the information related to Data Science.


Ultimate Posts

* Where to start learning more about Data Science. https://github.com/open-data-science/ultimate_posts/tree/master/where_to_start
* @opendatascience channel audience research. https://github.com/open-data-science/ods_channel_stats_eda


Open Data Science

ODS.ai is an international community of people anyhow related to Data Science.

Website: https://ods.ai



Hashtags

Through the years we accumulated a big collection of materials, most of them accompanied by hashtags.

#deeplearning #DL β€” post about deep neural networks (> 1 layer)
#cv β€” posts related to Computer Vision. Pictures and videos
#nlp #nlu β€” Natural Language Processing and Natural Language Understanding. Texts and sequences
#audiolearning #speechrecognition β€” related to audio information processing
#ar β€” augmeneted reality related content
#rl β€” Reinforcement Learning (agents, bots and neural networks capable of playing games)
#gan #generation #generatinveart #neuralart β€” about neural artt and image generation
#transformer #vqgan #vae #bert #clip #StyleGAN2 #Unet #resnet #keras #Pytorch #GPT3 #GPT2 β€” related to special architectures or frameworks
#coding #CS β€” content related to software engineering sphere
#OpenAI #microsoft #Github #DeepMind #Yandex #Google #Facebook #huggingface β€” hashtags related to certain companies
#productionml #sota #recommendation #embeddings #selfdriving #dataset #opensource #analytics #statistics #attention #machine #translation #visualization


Chats

- Data Science Chat https://t.me/datascience_chat
- ODS Slack through invite form at website

ODS resources

* Main website: https://ods.ai
* ODS Community Telegram Channel (in Russian): @ods_ru
* ML trainings Telegram Channel: @mltrainings
* ODS Community Twitter: https://twitter.com/ods_ai

Feedback and Contacts

You are welcome to reach administration through telegram bot: @opendatasciencebot
CORL: Offline Reinforcement Learning Library

Offline RL is a fresh paradigm that makes RL similar to the supervised learning, thus making it better applicable to the real-world problems. There is a whole bunch of recently developed Offline RL aglorithms, however, there was nots many of reliable open-sourced implementations for such algorithms

Our friends from @tinkoffai do some research in this direction and they recently open-sourced their internal offline RL library.

The main features are:
- Single-file implementations
- SOTA algorithms (Decision Transformer, AWAC, BC, CQL, IQL, TD3+BC, SAC-N, EDAC)
- Benchmarked on widely used D4RL datasets (results match performances reported in the original papers)
- Wandb logs for all of the experiments

Hope you will like it and the whole new world of Offline RL!

Github: https://github.com/tinkoff-ai/CORL

#tinkoff #RL #offline_lib