Data Science by ODS.ai 🦜
51K subscribers
363 photos
34 videos
7 files
1.52K links
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @haarrp
Download Telegram
​​NVidia released a technology to change face alignment on video

Nvidia has unveiled AI face-alignment that means you're always looking at the camera during video calls. Its new Maxine platform uses GANs to reconstruct the unseen parts of your head β€” just like a deepfake.

Link: https://www.theverge.com/2020/10/5/21502003/nvidia-ai-videoconferencing-maxine-platform-face-gaze-alignment-gans-compression-resolution

#NVidia #deepfake #GAN
​​Tutorial on Generative Adversarial Networks (GANs) with Keras and TensorFlow

Nice tutorial with enough theory to understand what you are doing and code to get it done.

Link: https://www.pyimagesearch.com/2020/11/16/gans-with-keras-and-tensorflow/

#Keras #TensorFlow #tutorial #wheretostart #GAN
​​MPG: A Multi-ingredient Pizza Image Generator with Conditional StyleGANs

Work on conditional image generation

ArXiV: https://arxiv.org/abs/2012.02821

#GAN #DL #food2vec
​​this comic does not exist

horror dataset + stylegan2


pdf book here

#gan #comix #book
​​πŸ”₯New breakthrough on text2image generation by #OpenAI

DALLΒ·E: Creating Images from Text

This architecture is capable of understanding style descriptions as well as complex relationship between objects in context.

That opens whole new perspective for digital agencies, potentially threatening stock photo sites and new opportunies for regulations and lawers to work on.

Interesting times!

Website: https://openai.com/blog/dall-e/

#GAN #GPT3 #openai #dalle #DL
​​JigsawGAN: Self-supervised Learning for Solving Jigsaw Puzzles with Generative Adversarial Networks

The authors suggest a GAN-based approach for solving jigsaw puzzles. JigsawGAN is a self-supervised method with a multi-task pipeline: classification branch classifies jigsaw permutations, GAN branch recovers features to images with the correct order.
The proposed method can solve jigsaw puzzles efficiently by utilizing both semantic information and edge information simultaneously.


Paper: https://arxiv.org/abs/2101.07555

#deeplearning #jigsaw #selfsupervised #gan
​​Real-World Super-Resolution of Face-Images from Surveillance Cameras

Most SR methods are trained on LR (low resolution) data, which is downsampled from HR (high resolution) data using bicubic interpolation, but real-life LR images are usually different, so models work worse on them. In this paper, the authors suggest using blur kernels, noise, and JPEG compression artifacts to generate LR images similar to the original ones.
Another suggested improvement is using ESRGAN and replacing VGG-loss with LPIPS-loss, as well as adding PatchGAN.
In addition, the authors show that NIMA metric better correlates with human perception (mean opinion rank) than traditional Image Quality Assessment methods.

Paper: https://arxiv.org/abs/2102.03113

#deeplearning #superresolution #gan #facesuperresolution
Forwarded from Gradient Dude
LatentCLR: A Contrastive Learning Approach for Unsupervised Discovery of Interpretable Directions

A framework that learns meaningful directions in GANs' latent space using unsupervised contrastive learning. Instead of discovering fixed directions such as in previous work, this method can discover non-linear directions in pretrained StyleGAN2 and BigGAN models. The discovered directions may be used for image manipulation.

Authors use the differences caused by an edit operation on the feature activations to optimize the identifiability of each direction. The edit operations are modeled by several separate neural nets βˆ†_i(z) and learning. Given a latent code z and its generated image x = G(z), we seek to find edit operations βˆ†_i(z) such that the image x' = G(βˆ†_i(z)) has semantically meaningful changes over x while still preserving the identity of x.


πŸ“ Paper
πŸ›  Code (next week)

#paper_tldr #cv #gan
Generating Furry Cars: Disentangling Object Shape and Appearance across Multiple Domains

This is an interesting paper about learning and combining representations of object shape and appearance from the different domains (for example, dogs and cars). This allows to create a model, which borrows different properties from each domain and generates images, which don't exist in a single domain.
The main idea is the following:
- use FineGAN as a base model;
- represent object appearance with a differentiable histogram of visual features;
- optimize the generator so that images with different shapes but similar appearances produce similar histograms;

Paper: https://openreview.net/forum?id=M88oFvqp_9
Project link: https://utkarshojha.github.io/inter-domain-gan/
Code will be available here: https://github.com/utkarshojha/inter-domain-gan

A detailed unofficial overview of the paper: https://andlukyane.com/blog/paper-review-furrycars

#cv #gan #deeplearning #contrastivelearning