​​Multilingual End to End Entity Linking
Introducing BELA, an unprecedented, open-source solution that is set to revolutionize the Natural Language Processing (NLP) arena! BELA addresses the complex challenge of Entity Linking, a task prevalent in many practical applications, by offering the very first fully end-to-end multilingual model. Astoundingly, it can efficiently identify and link entities in texts across an expansive range of 97 languages, a capability hitherto unseen. This marks a significant leap towards streamlining complex model stacks that have been a pervasive issue in the field.
BELA's architectural novelty lies in its adoption of a bi-encoder design. This enables it to conduct end-to-end linking of a passage in a single forward pass through a transformer, regardless of the number of entity mentions it contains. In its core Entity Disambiguation sub-task, it cleverly deploys a k-nearest neighbor (kNN) search using an encoded mention as a query in an entity index. What's even more impressive is BELA's scalability—it handles up to 16 million entities and delivers a remarkable throughput of 53 samples per second on a single GPU.
Paper link: https://arxiv.org/abs/2306.08896
Code link: https://github.com/facebookresearch/BELA
A detailed unofficial overview of the paper: https://andlukyane.com/blog/paper-review-bela
#deeplearning #nlp #entitylinking #multilingual
Introducing BELA, an unprecedented, open-source solution that is set to revolutionize the Natural Language Processing (NLP) arena! BELA addresses the complex challenge of Entity Linking, a task prevalent in many practical applications, by offering the very first fully end-to-end multilingual model. Astoundingly, it can efficiently identify and link entities in texts across an expansive range of 97 languages, a capability hitherto unseen. This marks a significant leap towards streamlining complex model stacks that have been a pervasive issue in the field.
BELA's architectural novelty lies in its adoption of a bi-encoder design. This enables it to conduct end-to-end linking of a passage in a single forward pass through a transformer, regardless of the number of entity mentions it contains. In its core Entity Disambiguation sub-task, it cleverly deploys a k-nearest neighbor (kNN) search using an encoded mention as a query in an entity index. What's even more impressive is BELA's scalability—it handles up to 16 million entities and delivers a remarkable throughput of 53 samples per second on a single GPU.
Paper link: https://arxiv.org/abs/2306.08896
Code link: https://github.com/facebookresearch/BELA
A detailed unofficial overview of the paper: https://andlukyane.com/blog/paper-review-bela
#deeplearning #nlp #entitylinking #multilingual