Data Science by ODS.ai 🦜
51K subscribers
363 photos
34 videos
7 files
1.52K links
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @haarrp
Download Telegram
​​TabR: Unlocking the Power of Retrieval-Augmented Tabular Deep Learning

The deep learning arena is abuzz with the rise of models designed for tabular data problems, challenging the traditional dominance of gradient-boosted decision trees (GBDT) algorithms. Among these, retrieval-augmented tabular DL models, which gather relevant training data like nearest neighbors for better prediction, are gaining traction. However, these novel models have only shown marginal benefits over properly tuned retrieval-free baselines, sparking a debate on the effectiveness of the retrieval-based approach.

In response to this uncertainty, this groundbreaking work presents TabR, an innovative retrieval-based tabular DL model. This breakthrough was achieved by augmenting a simple feed-forward architecture with an attention-like retrieval component. Several overlooked aspects of the attention mechanism were highlighted, leading to major performance improvements. On a set of public benchmarks, TabR stole the show, demonstrating unparalleled average performance, becoming the new state-of-the-art on numerous datasets, and even outperforming GBDT models on a recent benchmark designed to favor them.

Code link: https://github.com/yandex-research/tabular-dl-tabr
Paper link: https://arxiv.org/abs/2307.14338

A detailed unofficial overview of the paper:
https://andlukyane.com/blog/paper-review-tabr

#deeplearning #tabular