Hi, our friends @mike0sv and @agusch1n just open-sourced MLEM - a tool that helps you deploy your ML models as part of the DVC ecosystem
It’s a Python library + Command line tool.
TLDR:
📦 MLEM can package an ML model into a Docker image or a Python package, and deploy it to Heroku (we made them promise to add SageMaker, K8s and Seldon-core soon :parrot:).
⚙️ MLEM saves all model metadata to a human-readable text file: Python environment, model methods, model input & output data schema and more.
💅 MLEM helps you turn your Git repository into a Model Registry with features like ML model lifecycle management.
Read more in release blogpost: https://dvc.org/blog/MLEM-release
Also, check out the project: https://github.com/iterative/mlem
And the website: https://mlem.ai
Guys are happy to hear your feedback, discuss how this could be helpful for you, how MLEM compares to MLflow, etc.
Ask in the comments!
#mlops #opensource #deployment #dvc
It’s a Python library + Command line tool.
TLDR:
📦 MLEM can package an ML model into a Docker image or a Python package, and deploy it to Heroku (we made them promise to add SageMaker, K8s and Seldon-core soon :parrot:).
⚙️ MLEM saves all model metadata to a human-readable text file: Python environment, model methods, model input & output data schema and more.
💅 MLEM helps you turn your Git repository into a Model Registry with features like ML model lifecycle management.
Read more in release blogpost: https://dvc.org/blog/MLEM-release
Also, check out the project: https://github.com/iterative/mlem
And the website: https://mlem.ai
Guys are happy to hear your feedback, discuss how this could be helpful for you, how MLEM compares to MLflow, etc.
Ask in the comments!
#mlops #opensource #deployment #dvc
Reliable ML track at Data Fest Online 2023
Call for Papers
Friends, we are glad to inform you that the largest Russian-language conference on Data Science - Data Fest - from the Open Data Science community will take place in 2023 (at the end of May).
And it will again have a section from Reliable ML community. We are waiting for your applications for reports: write directly to me or Dmitry.
Track Info
The concept of Reliable ML is about what to do so that the result of the work of data teams would be, firstly, applicable in the business processes of the customer company and, secondly, brought benefits to this company.
For this you need to be able to:
- correctly build a portfolio of projects (#business)
- think over the system design of each project (#ml_system_design)
- overcome various difficulties when developing a prototype (#tech #causal_inference #metrics)
- explain to the business that your MVP deserves a pilot (#interpretable_ml)
- conduct a pilot (#causal_inference #ab_testing)
- implement your solution in business processes (#tech #mlops #business)
- set up solution monitoring in the productive environment (#tech #mlops)
If you have something to say on the topics above, write to us! If in doubt, write anyway. Many of the coolest reports of previous Reliable ML tracks have come about as a result of discussion and collaboration on the topic.
If you are not ready to make a report but want to listen to something interesting, you can still help! Repost to a relevant community / forward to a friend = participate in the creation of good content.
Registration and full information about Data Fest 2023 is here.
@Reliable ML
Call for Papers
Friends, we are glad to inform you that the largest Russian-language conference on Data Science - Data Fest - from the Open Data Science community will take place in 2023 (at the end of May).
And it will again have a section from Reliable ML community. We are waiting for your applications for reports: write directly to me or Dmitry.
Track Info
The concept of Reliable ML is about what to do so that the result of the work of data teams would be, firstly, applicable in the business processes of the customer company and, secondly, brought benefits to this company.
For this you need to be able to:
- correctly build a portfolio of projects (#business)
- think over the system design of each project (#ml_system_design)
- overcome various difficulties when developing a prototype (#tech #causal_inference #metrics)
- explain to the business that your MVP deserves a pilot (#interpretable_ml)
- conduct a pilot (#causal_inference #ab_testing)
- implement your solution in business processes (#tech #mlops #business)
- set up solution monitoring in the productive environment (#tech #mlops)
If you have something to say on the topics above, write to us! If in doubt, write anyway. Many of the coolest reports of previous Reliable ML tracks have come about as a result of discussion and collaboration on the topic.
If you are not ready to make a report but want to listen to something interesting, you can still help! Repost to a relevant community / forward to a friend = participate in the creation of good content.
Registration and full information about Data Fest 2023 is here.
@Reliable ML
Practical ML Conf - The biggest offline ML conference of the year in Moscow.
- https://pmlconf.yandex.ru
- September 7, Moscow
- For speakers: offline
- For participants: offline and online (youtube)
- The conference language is Russian.
Call for propose is open https://pmlconf.yandex.ru/call_for_papers
#conference #nlp #cv #genAI #recsys #mlops #ecomm #hardware #research #offline #online
- https://pmlconf.yandex.ru
- September 7, Moscow
- For speakers: offline
- For participants: offline and online (youtube)
- The conference language is Russian.
Call for propose is open https://pmlconf.yandex.ru/call_for_papers
#conference #nlp #cv #genAI #recsys #mlops #ecomm #hardware #research #offline #online
Practical ML 2024 (PML) конференция для экспертов — использование ИИ для бизнеса | ML-конференция 2024 от Яндекса
Practical ML конференция для экспертов по внедрению ИИ в бизнес. Информационные доклады от ключевых разработчиков по работе с ML. PML Conf 2024 от компании Яндекс.