#Explainability tool для 🤗 #transformer. Если действительно работает как написано - удобный инструмент.
GitHub
#NLP #XAI
GitHub
#NLP #XAI
GitHub
GitHub - cdpierse/transformers-interpret: Model explainability that works seamlessly with 🤗 transformers. Explain your transformers…
Model explainability that works seamlessly with 🤗 transformers. Explain your transformers model in just 2 lines of code. - GitHub - cdpierse/transformers-interpret: Model explainability that works...
Библиотека для визуализации feature importance.
Интегрирует другие. Сама решений не предлагает
#explainability
Интегрирует другие. Сама решений не предлагает
#explainability
GitHub
GitHub - MAIF/shapash: 🔅 Shapash: User-friendly Explainability and Interpretability to Develop Reliable and Transparent Machine…
🔅 Shapash: User-friendly Explainability and Interpretability to Develop Reliable and Transparent Machine Learning Models - MAIF/shapash
Тэги доступные в канале на данный момент:
#alphafold2, #astronomy, #audio, #augmentation, #automl, #bayes, #biology, #botany, #captioning, #categorical, #chemistry, #classification, #clip, #cnn, #code, #community, #competition, #compression, #conference, #contrastivelearning, #course, #datasets, #debugging, #demo, #depth, #detection, #diffusion, #dilation, #dimensionality, #distillation, #earthscience, #economics, #explainability, #gan, #generative, #geometric, #gnn, #gpt, #gpu, #graph, #hardware, #holdontoyoirpapers, #image2text, #images, #inference, #joke, #julia, #jupyterlab, #jupyterlite, #labeling, #latex, #lnl, #medicine, #metrics, #mlp, #money, #multimodal, #nas, #news, #nlp, #noise, #novelviews, #optimizer, #outliers, #physics, #presentation, #python, #resnet, #resources, #rl, #rnn, #rocauc, #science, #scientificml, #segmentation, #SSL, #XAI, #separation, #sequences, #signal, #social, #sound, #speech, #styletransfer, #superresolution, #tabular, #text2image, #theory, #torrent, #training, #transformer, #translate, #tutorial, #twominutespapers, #video, #visualization, #waveforms, #гумунитарии, #дьяконов, #книги, #отборочные
#alphafold2, #astronomy, #audio, #augmentation, #automl, #bayes, #biology, #botany, #captioning, #categorical, #chemistry, #classification, #clip, #cnn, #code, #community, #competition, #compression, #conference, #contrastivelearning, #course, #datasets, #debugging, #demo, #depth, #detection, #diffusion, #dilation, #dimensionality, #distillation, #earthscience, #economics, #explainability, #gan, #generative, #geometric, #gnn, #gpt, #gpu, #graph, #hardware, #holdontoyoirpapers, #image2text, #images, #inference, #joke, #julia, #jupyterlab, #jupyterlite, #labeling, #latex, #lnl, #medicine, #metrics, #mlp, #money, #multimodal, #nas, #news, #nlp, #noise, #novelviews, #optimizer, #outliers, #physics, #presentation, #python, #resnet, #resources, #rl, #rnn, #rocauc, #science, #scientificml, #segmentation, #SSL, #XAI, #separation, #sequences, #signal, #social, #sound, #speech, #styletransfer, #superresolution, #tabular, #text2image, #theory, #torrent, #training, #transformer, #translate, #tutorial, #twominutespapers, #video, #visualization, #waveforms, #гумунитарии, #дьяконов, #книги, #отборочные
TorchCAM: class activation explorer
TorchCAM использует механизмы хуков PyTorch для легкого получения всей необходимой информации для создания активации класса без дополнительных усилий со стороны пользователя. Каждый объект CAM действует как обертка вокруг вашей модели.
GitHub
#cnn #Explainability
TorchCAM использует механизмы хуков PyTorch для легкого получения всей необходимой информации для создания активации класса без дополнительных усилий со стороны пользователя. Каждый объект CAM действует как обертка вокруг вашей модели.
GitHub
#cnn #Explainability
Feature extraction in torchvision
В обновлении torchvision (популярная надстройка к PyTorch) появились зачатки функционала Explainable AI (#XAI, запоминайте сокращение, будем его слышать все чаще и чаще).
Теперь, с помощью функции «из коробки», можно строить карты активации нейронов для сверточных сетей (не то что бы раньше было нельзя, но стало сильно удобнее).
🔭 Разбор и туториал
#explainability #images
В обновлении torchvision (популярная надстройка к PyTorch) появились зачатки функционала Explainable AI (#XAI, запоминайте сокращение, будем его слышать все чаще и чаще).
Теперь, с помощью функции «из коробки», можно строить карты активации нейронов для сверточных сетей (не то что бы раньше было нельзя, но стало сильно удобнее).
🔭 Разбор и туториал
#explainability #images