The AI Economist: Optimal Economic Policy Design via Two-level Deep Reinforcement Learning
ArXiv
Работа расширяющая Фреймворк
#ScientificML #RL #economics
ArXiv
Работа расширяющая Фреймворк
#ScientificML #RL #economics
Тэги доступные в канале на данный момент:
#alphafold2, #astronomy, #audio, #augmentation, #automl, #bayes, #biology, #botany, #captioning, #categorical, #chemistry, #classification, #clip, #cnn, #code, #community, #competition, #compression, #conference, #contrastivelearning, #course, #datasets, #debugging, #demo, #depth, #detection, #diffusion, #dilation, #dimensionality, #distillation, #earthscience, #economics, #explainability, #gan, #generative, #geometric, #gnn, #gpt, #gpu, #graph, #hardware, #holdontoyoirpapers, #image2text, #images, #inference, #joke, #julia, #jupyterlab, #jupyterlite, #labeling, #latex, #lnl, #medicine, #metrics, #mlp, #money, #multimodal, #nas, #news, #nlp, #noise, #novelviews, #optimizer, #outliers, #physics, #presentation, #python, #resnet, #resources, #rl, #rnn, #rocauc, #science, #scientificml, #segmentation, #SSL, #XAI, #separation, #sequences, #signal, #social, #sound, #speech, #styletransfer, #superresolution, #tabular, #text2image, #theory, #torrent, #training, #transformer, #translate, #tutorial, #twominutespapers, #video, #visualization, #waveforms, #гумунитарии, #дьяконов, #книги, #отборочные
#alphafold2, #astronomy, #audio, #augmentation, #automl, #bayes, #biology, #botany, #captioning, #categorical, #chemistry, #classification, #clip, #cnn, #code, #community, #competition, #compression, #conference, #contrastivelearning, #course, #datasets, #debugging, #demo, #depth, #detection, #diffusion, #dilation, #dimensionality, #distillation, #earthscience, #economics, #explainability, #gan, #generative, #geometric, #gnn, #gpt, #gpu, #graph, #hardware, #holdontoyoirpapers, #image2text, #images, #inference, #joke, #julia, #jupyterlab, #jupyterlite, #labeling, #latex, #lnl, #medicine, #metrics, #mlp, #money, #multimodal, #nas, #news, #nlp, #noise, #novelviews, #optimizer, #outliers, #physics, #presentation, #python, #resnet, #resources, #rl, #rnn, #rocauc, #science, #scientificml, #segmentation, #SSL, #XAI, #separation, #sequences, #signal, #social, #sound, #speech, #styletransfer, #superresolution, #tabular, #text2image, #theory, #torrent, #training, #transformer, #translate, #tutorial, #twominutespapers, #video, #visualization, #waveforms, #гумунитарии, #дьяконов, #книги, #отборочные
DECORE: Deep Compression with Reinforcement Learning
Многие глубокие нейронные сети имеют от миллионов до миллиардов параметров, что делает их непригодными для реальных приложений с ограничениями памяти или работы с низкой задержкой. Поэтому для широкого распространения глубокого обучения необходимо использовать мощные методы сжатия сетей (включая квантизация и тд). Авторы представляют DECORE, подход к обучению с подкреплением для автоматизации процесса сжатия сети. Используя простой метод градиентной политики для изучения того, какие нейроны или каналы следует оставить или удалить.
В отличие от других методов, DECORE прост и быстр в обучении, требуя всего несколько часов обучения на 1 GPU. При применении к стандартным сетевым архитектурам на различных наборах данных наш подход достигает сжатия от 11x до 103x на различных архитектурах, сохраняя при этом точность, аналогичную точности исходных больших сетей.
arXiv
#compression #inference #RL
Многие глубокие нейронные сети имеют от миллионов до миллиардов параметров, что делает их непригодными для реальных приложений с ограничениями памяти или работы с низкой задержкой. Поэтому для широкого распространения глубокого обучения необходимо использовать мощные методы сжатия сетей (включая квантизация и тд). Авторы представляют DECORE, подход к обучению с подкреплением для автоматизации процесса сжатия сети. Используя простой метод градиентной политики для изучения того, какие нейроны или каналы следует оставить или удалить.
В отличие от других методов, DECORE прост и быстр в обучении, требуя всего несколько часов обучения на 1 GPU. При применении к стандартным сетевым архитектурам на различных наборах данных наш подход достигает сжатия от 11x до 103x на различных архитектурах, сохраняя при этом точность, аналогичную точности исходных больших сетей.
arXiv
#compression #inference #RL
This media is not supported in your browser
VIEW IN TELEGRAM
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU
WarpDrive - это гибкая, легкая и простая в использовании система обучения с подкреплением (RL) с открытым исходным кодом, которая реализует многоагентный RL на одном GPU.
Используя возможности экстремального распараллеливания графических процессоров, WarpDrive позволяет на порядки ускорить RL по сравнению с симуляцией на CPU + реализацией моделей на GPU. Он чрезвычайно эффективен, поскольку позволяет избежать копирования данных "туда-сюда" между CPU и GPU, а также параллельно выполнять моделирование для нескольких агентов и нескольких копий среды. В совокупности это позволяет пользователю запускать тысячи параллельных мультиагентных симуляций и тренироваться на очень больших батчах, достигая более чем 100-кратной пропускной способности по сравнению с аналогами на базе CPU.
GitHub
#RL #resources
WarpDrive - это гибкая, легкая и простая в использовании система обучения с подкреплением (RL) с открытым исходным кодом, которая реализует многоагентный RL на одном GPU.
Используя возможности экстремального распараллеливания графических процессоров, WarpDrive позволяет на порядки ускорить RL по сравнению с симуляцией на CPU + реализацией моделей на GPU. Он чрезвычайно эффективен, поскольку позволяет избежать копирования данных "туда-сюда" между CPU и GPU, а также параллельно выполнять моделирование для нескольких агентов и нескольких копий среды. В совокупности это позволяет пользователю запускать тысячи параллельных мультиагентных симуляций и тренироваться на очень больших батчах, достигая более чем 100-кратной пропускной способности по сравнению с аналогами на базе CPU.
GitHub
#RL #resources
Physics-based Deep Learning
Этот документ содержит практическое и исчерпывающее введение во все, что связано с глубоким обучением в контексте физического моделирования. По мере возможности все темы сопровождаются практическими примерами кода в виде блокнотов Jupyter для быстрого начала работы. Помимо стандартного обучения на данных, рассматривают ограничения на физические потери, дифференцируемые симуляции, а ещё обучение с подкреплением и моделирование неопределенности.
Мы живем в захватывающие времена: эти методы обладают огромным потенциалом, чтобы фундаментально изменить то, чего могут достичь компьютерные симуляции!
Книга
Сайт
#books #physics #ScientificML #RL
Этот документ содержит практическое и исчерпывающее введение во все, что связано с глубоким обучением в контексте физического моделирования. По мере возможности все темы сопровождаются практическими примерами кода в виде блокнотов Jupyter для быстрого начала работы. Помимо стандартного обучения на данных, рассматривают ограничения на физические потери, дифференцируемые симуляции, а ещё обучение с подкреплением и моделирование неопределенности.
Мы живем в захватывающие времена: эти методы обладают огромным потенциалом, чтобы фундаментально изменить то, чего могут достичь компьютерные симуляции!
Книга
Сайт
#books #physics #ScientificML #RL
This media is not supported in your browser
VIEW IN TELEGRAM
Braxlines
Braxlines - это серия минималистичных реализаций для формулировок задач RL, выходящих за рамки простой максимизации вознаграждения. Он построен на основе JAX физического симулятора Brax, предназначенного для использования на GPU и прочих ускорителях. Brax эффективен как для одноядерного обучения, так и для массивно-параллельного моделирования.
Обучение политикам с помощью Braxlines занимает менее нескольких минут. Brax работает со скоростью миллионы физических шагов в секунду на TPU (доступно в колабе)
💻 Код и Colab
📎 Статья
#RL
Braxlines - это серия минималистичных реализаций для формулировок задач RL, выходящих за рамки простой максимизации вознаграждения. Он построен на основе JAX физического симулятора Brax, предназначенного для использования на GPU и прочих ускорителях. Brax эффективен как для одноядерного обучения, так и для массивно-параллельного моделирования.
Обучение политикам с помощью Braxlines занимает менее нескольких минут. Brax работает со скоростью миллионы физических шагов в секунду на TPU (доступно в колабе)
💻 Код и Colab
📎 Статья
#RL
Команда исследователей из DeepMind нашла применение для RL в ядерном синтезе. Ядерный синтез с использованием магнитного удержания является многообещающим путем к достижению устойчивой энергии. Основной проблемой является формирование и поддержание высокотемпературной плазмы внутри сосуда токамака. Для удержания плазмы необходим нечеловеческий уровень управления катушками магнитных приводов.
В новой работе представили метод для проектирования магнитного контроллера токамака, который автономно обучается управлять полным набором катушек. DeepMind успешно демонстрируют контроль за разнообразными конфигурации плазмы.
Предложенный подход демонстрирует потенциал обучения с подкреплением для ускорения исследований в области термоядерного синтеза.
Астрологи явно обьявили 2022 год годом RL. Казалось бы, на фоне успехов в глубоком обучении, на обучение с подкреплением (RL) начали забивать даже OpenAI, которые с него начали свой звёздный путь. Но видимо это было затишье перед бурей.
📎 Статья
#ScientificML #RL
В новой работе представили метод для проектирования магнитного контроллера токамака, который автономно обучается управлять полным набором катушек. DeepMind успешно демонстрируют контроль за разнообразными конфигурации плазмы.
Предложенный подход демонстрирует потенциал обучения с подкреплением для ускорения исследований в области термоядерного синтеза.
Астрологи явно обьявили 2022 год годом RL. Казалось бы, на фоне успехов в глубоком обучении, на обучение с подкреплением (RL) начали забивать даже OpenAI, которые с него начали свой звёздный путь. Но видимо это было затишье перед бурей.
📎 Статья
#ScientificML #RL