Интерактивная книга Deep Learning for Molecules and Materials.
Глубокое обучение становится стандартным инструментом в химии и материаловедении. Классический пример - соединение активности и структуры молекулы. Недавний пример - значительное ускорение квантовых расчетов до такой степени, что вы можете достичь точности уровня DFT с помощью быстрого дифференцируемого расчета. Что делает глубокое обучение особенно актуальным, так это его способность генерировать новые данные.
В Веб-книге куча интерактивных примеров с кодом для различных задач.
#ScientificML #books #chemistry #resources
Глубокое обучение становится стандартным инструментом в химии и материаловедении. Классический пример - соединение активности и структуры молекулы. Недавний пример - значительное ускорение квантовых расчетов до такой степени, что вы можете достичь точности уровня DFT с помощью быстрого дифференцируемого расчета. Что делает глубокое обучение особенно актуальным, так это его способность генерировать новые данные.
В Веб-книге куча интерактивных примеров с кодом для различных задач.
#ScientificML #books #chemistry #resources
Physics-based Deep Learning
Этот документ содержит практическое и исчерпывающее введение во все, что связано с глубоким обучением в контексте физического моделирования. По мере возможности все темы сопровождаются практическими примерами кода в виде блокнотов Jupyter для быстрого начала работы. Помимо стандартного обучения на данных, рассматривают ограничения на физические потери, дифференцируемые симуляции, а ещё обучение с подкреплением и моделирование неопределенности.
Мы живем в захватывающие времена: эти методы обладают огромным потенциалом, чтобы фундаментально изменить то, чего могут достичь компьютерные симуляции!
Книга
Сайт
#books #physics #ScientificML #RL
Этот документ содержит практическое и исчерпывающее введение во все, что связано с глубоким обучением в контексте физического моделирования. По мере возможности все темы сопровождаются практическими примерами кода в виде блокнотов Jupyter для быстрого начала работы. Помимо стандартного обучения на данных, рассматривают ограничения на физические потери, дифференцируемые симуляции, а ещё обучение с подкреплением и моделирование неопределенности.
Мы живем в захватывающие времена: эти методы обладают огромным потенциалом, чтобы фундаментально изменить то, чего могут достичь компьютерные симуляции!
Книга
Сайт
#books #physics #ScientificML #RL