Neural Networks | Нейронные сети
11.6K subscribers
680 photos
149 videos
170 files
9.37K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
​Project: DeepNLP course
Link: https://github.com/DanAnastasyev/DeepNLP-Course
Description:
Deep learning for NLP crash course at ABBYY. Topics include: sentiment analysis, word embeddings, CNNs, seq2seq with attention and much more. Enjoy!
#ML #DL #NLP #python #abbyy #opensource

🔗 DanAnastasyev/DeepNLP-Course
Deep NLP Course. Contribute to DanAnastasyev/DeepNLP-Course development by creating an account on GitHub.
Neurohive (VK)

TextFlint – это мультиязычная, многозадачная платформа для анализа устойчивости NLP-моделей. В открытом доступе для английского и китайского языков, другие языки разрабатываются.

#Development #Arxiv #NLP #Opensource
Forwarded from Machinelearning
💥Релиз Qwen2.5-1M!

Теперь модель поддерживает контекст длиной 1 МИЛЛИОН ТОКЕН токенов 🔥

⭐️ Доступны 2 модели: Qwen2.5-7B-Instruct-1M и Qwen2.5-14B-Instruct-1M.

Доступен подробный технический отчет о серии Qwen2.5-1M! 📊

📖 Технический отчет: https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-1M/Qwen2_5_1M_Technical_Report.pdf
📄 Блог: https://qwenlm.github.io/blog/qwen2.5-1m/
🚀 Потестировать можно здесь: https://chat.qwenlm.ai
🤗 Huggingface: https://huggingface.co/collections/Qwen/qwen25-1m-679325716327ec07860530ba
Modelscope: https://modelscope.cn/collections/Qwen25-1M-d6cf9fd33f0a40

@ai_machinelearning_big_data

#qwen #opensource #ml #llm
Forwarded from Machinelearning
🧠 Oh sh**, here we go again.

Alibaba релизнули еще одну модель: Qwen2.5-Max

- MoE
- предварительно обученная на масштабных датасетах и пост-обученная с помощью SFT и RLHF
- превосходит DeepSeek V3 на бенчмарках: Arena Hard, LiveBench, LiveCodeBench, GPQA-Diamond
- Может генерить видео, картинки, поддерживает поиск в интернете.

📖 Релиз: https://qwenlm.github.io/blog/qwen2.5-max/
💬 Chat: https://chat.qwenlm.ai (choose Qwen2.5-Max as the model)
⚙️ API: https://alibabacloud.com/help/en/model-studio/getting-started/first-api-call-to-qwen?spm=a2c63.p38356.help-menu-2400256.d_0_1_0.1f6574a72ddbKE
🤗 HF: https://huggingface.co/spaces/Qwen/Qwen2.5-Max-Demo

#Qwen #ml #llm #Alibaba #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🌟 YOLOE — это усовершенствованная версия алгоритма обнаружения объектов, вдохновлённая классической архитектурой YOLO и разработанная командой THU-MIG.

Архитектура YOLO (You Only Look Once) получила своё название благодаря подходу, при котором нейронная сеть анализирует всё изображение целиком за один проход, чтобы определить присутствие и расположение объектов. Это отличается от других методов, которые сначала выделяют потенциальные области с объектами, а затем отдельно классифицируют их, что требует нескольких обработок одного изображения

YOLOE сохраняет принцип однократного взгляда на изображение для детекции объектов, но вносит архитектурные улучшения, направленные на повышение точности и эффективности модели.

Ключевые отличия от классического YOLO:

- Оптимизированная архитектура: В YOLOE внедрены новые подходы для более эффективной обработки признаков, что позволяет улучшить качество детекции без значительного увеличения вычислительных затрат.
- Повышенная точность: Улучшенные модули и методы, такие как ре-параметризация отдельных блоков, способствуют более точному обнаружению объектов, включая мелкие и сложно различимые элементы.
- Скорость и эффективность: YOLOE сохраняет высокую скорость инференса, делая его пригодным для задач в реальном времени, при этом обеспечивая конкурентоспособное соотношение производительности и точности.

▶️YOLOE требует в 3 раза меньших затрат на обучение по сравнению с YOLO-Worldv2, что делает процесс обучения более экономичным

YOLOE представляет собой современное и улучшенное решение для задач детекции объектов, совмещающее лучшие стороны классического YOLO с новыми архитектурными подходами.

🖥Github
🟡Статья
🟡HF
🟡Colab

#yoloe #opensource #ml #ai #yolo #objectdetection
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
✔️ "Speech and Language Processing": 3-е издания книги

Этот открытый учебник считается де-факто стандартом и одним из самых авторитетных и всеобъемлющих ресурсов для изучения областей обработки естественного языка (NLP), вычислительной лингвистики и обработки речи.

🌟 Авторы: Дэн Джурафски и Джеймс Х. Мартин - известные фигуры в области NLP и вычислительной лингвистики. Книга считается классическим текстом, обновленным для включения современных методов, таких как трансформеры, которые доминируют в области NLP.

Книга разделена на три части, включающие 24 основные главы и 8 приложений.

Темы охватывают широкий спектр, включая:
😶Фундаментальные алгоритмы
😶Приложения NLP (Обработки Естественного Языка)
😶Регулярные выражения
😶Нейронные сети и трансформеры,
😶Машинный перевод и другие аспекты NLP
😶Аннотирование (или Разметка) лингвистической структуры.

Для каждой главы доступны слайды в форматах PPTX и PDF, что делает ресурс полезным для преподавателей.

Для всех, кто заинтересован в изучении NLP это фантастически полезный ресурс.

🟡Книга в PDF
🟡Все Главы
🟡Еще книги по NLP

@ai_machinelearning_big_data


#freebook #opensource #nlp
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🦾 Berkeley Humanoid Lite — открытый человекоподобный робот

Калифорнийский университет Беркли представил проект Humanoid Lite — результат многолетних исследований и экспериментов по созданию простых в производстве человекоподобных роботов.

Платформа полностью придерживается принципов Open Hardware: в ней используются свободно распространяемое ПО, серийные комплектующие, доступные в розничной продаже, а также детали, напечатанные на 3D-принтере.

🌟 100 % open-source под MIT-лицензией: прошивки, схемы, BOM, STL-модели, RL-контроллеры
✔️ Open Hardware: доступные в рознице электро- и мехкомпоненты, детали печатаются на обычном FDM-принтере
➡️ Итоговая стоимость сборки — примерно 5 000 USD
⭐️ Модульная конструкция: легко превращается в квадропода или «кенавроподобного» робота
➡️ Экосистема: Isaac Lab / Isaac Sim / MuJoCo, телеметрия через SteamVR-контроллеры

Что доступно:

- Исходный код робота на C++ и Python
- Модели машинного обучения для контроллера движений
- Чертежи пластиковых деталей
- Полный список комплектующих с ссылками на покупку
- Пошаговый сборочный план
- Симуляционные окружения для тренировки и запуска робота


🌟 Что робот умеет уже сейчас
- локомоция: RL-контроллер приводит в заданную точку
- телеприсутствие: человек управляет манипулятором через VR-контроллеры
- навигация: экспериментальные алгоритмы обхода препятствий
- поддержка мелкой моторики

🔥 Как удалось удешевить:
- пластиковые шестерни, напечатанные на 3D-принтере
- циклоидные редукторы, повышающие надёжность пластика
- использование типовых драйверов и контроллеров без кастомных плат

*Clone → Print → Build → Hack!* 🤓

🔜 Проект
🔜 Код
🔜 Схемы

@ai_machinelearning_big_data


#robots #ai #ml #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
✔️ Релиз DeepSeek R1-0528

Главное:
• Глубокое рассуждение — на уровне моделей Google
• Улучшена генерация текста — более естественно, структурировано и аккуратно
• Уникальный стиль reasoning — не просто быстро, а вдумчиво и последовательно
• Может работать над одной задачей 30–60 минут, удерживая контекст

Новая модель показывает результат почти на уровне o3 (High) на бенчмарк LiveCodeBench.

https://huggingface.co/deepseek-ai/DeepSeek-R1-0528

@ai_machinelearning_big_data

#DeepSeek #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM