Neural Networks | Нейронные сети
11.6K subscribers
680 photos
149 videos
170 files
9.37K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
​Facebook has released #PyText — new framework on top of #PyTorch.

This framework is build to make it easier for developers to build #NLP models.

Link: https://code.fb.com/ai-research/pytext-open-source-nlp-framework/

🔗 Open-sourcing PyText for faster NLP development
We are open-sourcing PyText, a framework for natural language processing. PyText is built on PyTorch and it makes it faster and easier to build deep learning models for NLP.
​PyText

- PyText https://github.com/facebookresearch/pytext from Facebook:
- TLDR - FastText meets PyTorch;
- Very similar to AllenNLP in nature;
- Will be useful if you can afford to write modules for their framework to solve 100 identical tasks (i.e. like Facebook with 200 languages);
- In itself - seems to be too high maintenance to use;

I will not use use it.

#nlp
#deep_learning

🔗 facebookresearch/pytext
A natural language modeling framework based on PyTorch - facebookresearch/pytext
​Learning from Dialogue after Deployment: Feed Yourself, Chatbot!

From abstract: The self-feeding chatbot, a dialogue agent with the ability to extract new training examples from the conversations it participates in.

This is an article about chatbot which is capable of true online learning. There is also a venturebeat article on the subject, covering the perspective: «Facebook and Stanford researchers design a chatbot that learns from its mistakes».

Venturebeat: https://venturebeat.com/2019/01/17/facebook-and-stanford-researchers-design-a-chatbot-that-learns-from-its-mistakes/
ArXiV: https://arxiv.org/abs/1901.05415

#NLP #chatbot #facebook #Stanford

🔗 Facebook and Stanford researchers design a chatbot that learns from its mistakes
Chatbots rarely make great conversationalists. With the exception of perhaps Microsoft’s Xiaoice in China, which has about 40 million users and averages 23 back-and-forth exchanges, and Alibaba’s Dian Xiaomi, an automated sales agent that serves nearly 3.5 million customers a day, most can’t hold humans’ attention for much longer than 15 minutes. But that’s not tempering bot adoption any — in fact
​Project: DeepNLP course
Link: https://github.com/DanAnastasyev/DeepNLP-Course
Description:
Deep learning for NLP crash course at ABBYY. Topics include: sentiment analysis, word embeddings, CNNs, seq2seq with attention and much more. Enjoy!
#ML #DL #NLP #python #abbyy #opensource

🔗 DanAnastasyev/DeepNLP-Course
Deep NLP Course. Contribute to DanAnastasyev/DeepNLP-Course development by creating an account on GitHub.
🎥 A Practical Introduction to Productionizing NLP Models - Brendon Villalobos - @bkvillalobos
👁 1 раз 1586 сек.
It's exciting to create Deep Learning models that can interpret natural language, but resource-greedy NLP models can bottleneck performance in your app. This talk is a practical introduction to productionizing NLP models from training through deployment, with tips to avoid common pitfalls.

#NLP #deeplearning #techconference
​The Illustrated GPT-2 (Visualizing Transformer Language Models)

https://jalammar.github.io/illustrated-gpt2/
#ArtificialIntelligence #NLP #UnsupervisedLearning

🔗 The Illustrated GPT-2 (Visualizing Transformer Language Models)
Discussions: Hacker News (64 points, 3 comments), Reddit r/MachineLearning (219 points, 18 comments) This year, we saw a dazzling application of machine learning. The OpenAI GPT-2 exhibited impressive ability of writing coherent and passionate essays that exceed what we anticipated current language models are able to produce. The GPT-2 wasn’t a particularly novel architecture – it’s architecture is very similar to the decoder-only transformer. The GPT2 was, however, a very large, transformer-based language model trained on a massive dataset. In this post, we’ll look at the architecture that enabled the model to produce its results. We will go into the depths of its self-attention layer. And then we’ll look at applications for the decoder-only transformer beyond language modeling. My goal here is to also supplement my earlier post, The Illustrated Transformer, with more visuals explaining the inner-workings of transformers, and how they’ve evolved since the original paper. My hope is that this visual language will hopefully make it easier to explain later Transformer-based models as their inner-workings continue to evolve.
​As it turns out, Wang Ling was way ahead of the curve re NLP's muppet craze (see slides from LxMLS '16 & Oxford #NLP course '17 below).

https://github.com/oxford-cs-deepnlp-2017/lectures

🔗 oxford-cs-deepnlp-2017/lectures
Oxford Deep NLP 2017 course. Contribute to oxford-cs-deepnlp-2017/lectures development by creating an account on GitHub.
​SpeechBrain
A PyTorch-based Speech Toolkit

Video, by Mirco Ravanelli : https://youtube.com/watch?v=XETiKbN9ojE

: https://speechbrain.github.io

#speechbrain #NLP #DeepLearning

🔗 The SpeechBrain Project
SpeechBrain is an open-source and all-in-one speech toolkit relying on PyTorch. The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies
​SBERT-WK: A Sentence Embedding Method by Dissecting BERT-based Word Models

Sentence embedding is an important research topic in natural language processing (NLP) since it can transfer knowledge to downstream tasks. Meanwhile, a contextualized word representation, called BERT, achieves the state-of-the-art performance in quite a few NLP tasks.

Yet, it is an open problem to generate a high quality sentence representation from BERT-based word models. It was shown in previous study that different layers of BERT capture different linguistic properties. This allows us to fusion information across layers to find better sentence representation.

[GitHub]

https://github.com/BinWang28/SBERT-WK-Sentence-Embedding

[arXiv]
https://arxiv.org/abs/2002.06652

#ai #artificialintelligence #deeplearning #nlp #nlproc #machinelearning

🔗 BinWang28/SBERT-WK-Sentence-Embedding
Code for Paper: SBERT-WK: A Sentence Embedding Method By Dissecting BERT-based Word Models - BinWang28/SBERT-WK-Sentence-Embedding
23 апреля в 11:00 пройдет онлайн-конференция «Нас слышат, видят, реагируют: куда движутся технологии?» Технологических конкурсов Up Great.

Конференция посвящена возможностям взаимного обучения человека и компьютера, а также потенциалу технологий распознавания естественного языка и «пониманию» искусственным интеллектом смысла текста.
А еще на конференции вы узнаете подробности о новом техконкурсе Up Great ПРО//ЧТЕНИЕ, участники которого должны будут разработать ИИ, способный находить фактические, логические и смысловые ошибки в текстах. Подать заявку на конкурс можно здесь: https://bit.ly/2YUc3mD

Темы для обсуждения:
🔷 Где, как и зачем нужно развивать технологии коммуникации человека и машины? Как раскрыть и освоить новые области внедрения технологий искусственного интеллекта в сфере распознавания?
🔷 Как устроены лучшие решения мировых игроков? Есть ли у России конкурентное преимущество на международных рынках.
🔷 Какие подходы могут привести к следующем прорыву в обработке естественных языков: «пониманию» смысла и логики в тексте?

Спикеры:
— Михаил Бурцев, заведующий лабораторией нейронных систем и глубокого обучения, МФТИ
— Андрей Устюжанин, руководитель совместных проектов Яндекса и CERN
— Иван Ямщиков, PhD, научный сотрудник Института Макса Планка (Лейпциг, Германия), ИИ-евангелист компании ABBYY, сооснователь Creaited Labs
— Константин Воронцов, доктор физико-математических наук. заведующий лабораторией машинного интеллекта МФТИ
— Константин Кайсин, операционный директор технологических конкурсов Up Great
— Юрий Молодых, директор по развитию технологических конкурсов Up Great

Участие бесплатное. Регистрация по ссылке: https://bit.ly/2Rvstz9

Присоединяйтесь!

#Технологические_конкурсы #Up_Great #НТИ #ИИ #прочтение #machinelearning #nlp
Neurohive (VK)

TextFlint – это мультиязычная, многозадачная платформа для анализа устойчивости NLP-моделей. В открытом доступе для английского и китайского языков, другие языки разрабатываются.

#Development #Arxiv #NLP #Opensource
Data Science / Machine Learning / AI / Big Data (VK)

The NLP Cookbook: Modern Recipes for Transformer based Deep Learning Architectures
Sushant Singh, Ausif Mahmood: https://arxiv.org/abs/2104.10640
#NLP #Transformer #DeepLearning
Forwarded from Machinelearning
🌟 WordLlama: простой тулкит для NLP.

WordLlama — это быстрый и легкий набор инструментов для обработки естественного языка для задач нечеткой дедупликации, оценки сходства и ранжирования слов.

Он оптимизирован для CPU и способен создавать эффективные представления текстовых лексем, используя компоненты из больших языковых моделей, например LLama3.

Ключевые особенности WordLlama:

🟢Представления матрешки: пользователь могут обрезать измерения эмбеддинга по мере необходимости, 1024-dim может быть усечена до 64, 128, 256 или 512.

🟢Низкие требования к ресурсам: WordLlama эффективно работает на CPU, выполняя быстрый поиск токенов со средним пулом.

🟢Бинаризация: будущие обновления будут включать модели, которые можно упаковать в небольшие целочисленные массивы для более быстрых вычислений с использованием расстояния Хэмминга.

🟢Инференс только на основе NumPy: конструкция легкая и простая, что позволяет легко интегрировать ее в существующие рабочие процессы.

Эксперименты на наборе данных MTEB показывают, что WordLlama превосходит GloVe 300d по всем показателям, несмотря на значительно меньший размер (16 МБ против >2 ГБ).

WordLlama демонстрирует высокую производительность в задачах кластеризации, реранжирования, классификации текстов и семантического поиска.

В будущем разработчики планируют добавить функции для семантического разделения текста, а также примеры блокнотов и конвейеры RAG.


📌Лицензирование : MIT License.


🟡Demo
🖥Github


@ai_machinelearning_big_data

#AI #ML #Toolkit #NLP #WordLlama
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
✔️ "Speech and Language Processing": 3-е издания книги

Этот открытый учебник считается де-факто стандартом и одним из самых авторитетных и всеобъемлющих ресурсов для изучения областей обработки естественного языка (NLP), вычислительной лингвистики и обработки речи.

🌟 Авторы: Дэн Джурафски и Джеймс Х. Мартин - известные фигуры в области NLP и вычислительной лингвистики. Книга считается классическим текстом, обновленным для включения современных методов, таких как трансформеры, которые доминируют в области NLP.

Книга разделена на три части, включающие 24 основные главы и 8 приложений.

Темы охватывают широкий спектр, включая:
😶Фундаментальные алгоритмы
😶Приложения NLP (Обработки Естественного Языка)
😶Регулярные выражения
😶Нейронные сети и трансформеры,
😶Машинный перевод и другие аспекты NLP
😶Аннотирование (или Разметка) лингвистической структуры.

Для каждой главы доступны слайды в форматах PPTX и PDF, что делает ресурс полезным для преподавателей.

Для всех, кто заинтересован в изучении NLP это фантастически полезный ресурс.

🟡Книга в PDF
🟡Все Главы
🟡Еще книги по NLP

@ai_machinelearning_big_data


#freebook #opensource #nlp
Please open Telegram to view this post
VIEW IN TELEGRAM