Машинное обучение RU
17.7K subscribers
1.57K photos
207 videos
11 files
2.04K links
Все о машинном обучении

админ - @workakkk

@data_analysis_ml - анализ даннных

@ai_machinelearning_big_data - Machine learning

@itchannels_telegram -лучшие ит-каналы

@pythonl - Python

@pythonlbooks- python 📚

@datascienceiot - 📚

РКН: clck.ru/3FmrUw
Download Telegram
🚀 Реализация MetNet-3, нейронной модели погоды SOTA из Google Deepmind, в #Pytorch

https://github.com/lucidrains/metnet3-pytorch

#machinelearning #ml #ai #neuralnetworks #datascience #deeplearning

@machinelearning_ru
👍4🔥21
Forwarded from Machinelearning
⚡️ GraphRAG — методология улучшенного извлечения данных для генерации текста из определенных источников (RAG) от Microsoft.

GraphRAG использует графы знаний для улучшения ответов на запросы. Во время запроса система обращается к графу знаний и использует резюме сообществ и связи между сущностями для формирования контекста, который помогает LLM дать более точный ответ, чем традиционные методы, основанные на поиске по векторным сходствам.

Архитектура GraphRAG состоит из ключевых компонентов:

Indexer : разделяет корпус данных на мелкие текстовые блоки (TextUnits), извлекает из них сущности, связи и ключевые утверждения.
Clustering : группирует данные в иерархическую структуру с использованием метода Лейдена, создавая граф знаний.
Community Summarization : генерирует обобщенные описания для каждой группы данных, что помогает в понимании контекста и смыслового связывания всей информации.
Knowledge Graph : структура, объединяющая сущности и их связи, созданная на основе данных.

GraphRAG значительно улучшает работу моделей языка с частными данными, позволяя им более точно и полно отвечать на сложные вопросы, требующие синтеза информации из разных источников.

⚠️ Рекомендации и предупреждения:

- Эффективность индексации зависит от правильной идентификации понятий
- Индексация может быть дорогостоящей, рекомендуется создание тестового набора данных
- Система предназначена для опытных пользователей в предметной области
- Необходим анализ ответов человеком для получения достоверной информации
- Методология наиболее эффективна на текстовых данных с общей темой и множеством сущностей

📄 Документация:

🟢локальный запуск
🟢конфигурирование
🟢эмулятор Azurite

🖥Github
🖥Github для запуска на API Azure
🟡Страница проекта
🟡Arxiv

@ai_machinelearning_big_data

#LLM #GraphRAG #ML #RAG #NLP #Deeplearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥3👍1
🦎Armadillo - библиотека ML на С++

Armadillo — это библиотека линейной алгебры на C++, разработанная НИЦТА и независимыми участниками, применяемая для научных вычислений в машинном обучении и других областях, таких как биоинформатика и компьютерное зрение. Библиотека оптимизирует вычисления благодаря многопоточности OpenMP и предоставляет интерфейс, похожий на MATLAB. Подходит для быстрой реализации научных исследований в продуктивные среды.

#machinelearning #DataScience #python #AI #DeepLearning #cplusplus #mlalgorithms #DataVisualization #jobs

📎 Описание либы

@machinelearning_ru
4👍4🔥2
🖥 CUDA Programming Course – High-Performance Computing with GPUs

Свежий Бесплатный курс от freeCodeCamp по программированию CUDA.

Этот 12 -ти часовой бесплатный курс научит вас программировать с помощью Nvidia CUDA и использовать графические процессоры для высокопроизводительных вычислений и Deep learning.

Содержание:
🔜 (0:00:00) Вступление
🔜 (0:16:52) Глава 1 (Экосистема глубокого обучения)
🔜 (0:37:43) Глава 2 (Настройка CUDA)
🔜 (0:47:03) Глава 3 (Обзор C/C++)
🔜(1:35:47) Глава 4 (Введение в графические процессоры)
🔜 (1:51:40) Глава 5 (Написание ваших первых ядер)
🔜 (3:55:26) Глава 6 (CUDA API)
🔜 (5:35:22) Глава 7 (Быстрое умножение матриц)
🔜 (8:22:36) Глава 8 (Triton)
🔜 (9:04:43) Глава 9 (Расширения PyTorch)
🔜 (9:18:10) Глава 10 (Многослойный персептрон MNIST)
🔜 (11:41:13) Глава 11 (Что изучать дальше?)
🔜 (11:54:38) Заключение

Video: https://www.youtube.com/watch?v=86FAWCzIe_4
Code: https://github.com/Infatoshi/cuda-course
Github https://github.com/Infatoshi/mnist-cuda

#cuda #deeplearning #cpp #c #bigdata #courses #бесплатныйкурс

@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥13👍53🎉2🤩2👏1
Forwarded from Machinelearning
🥥 Training Large Language Models to Reason in a Continuous Latent Space

Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).

Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.

Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем

При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.

В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами <bot> и <eot>.

Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.

На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.

Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.

Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.

Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов

git clone git@github.com:facebookresearch/coconut.git
cd coconut


Github
Paper

@ai_machinelearning_big_data


#deeplearning #nlp #reasoning #llm #ml
7
This media is not supported in your browser
VIEW IN TELEGRAM
🎥🔥 VideoPrism от GoogleDeepMind — универсальный видеоэнкодер нового поколения

Модель легко подключается к LLM или текстовому энкодеру, превращая видео в источник контекста.

🧠 Как работает:
• Сначала обучают CLIP-подобную video-text модель
• Затем дистиллируют видеоэнкодер в VideoPrism
• Получается компактный, но гибкий видеоэнкодер, готовый к интеграции в мультимодальные модели

Все модели доступны под лицензией A2.0

Установка:

$ git clone https://github.com/google-deepmind/videoprism.git
$ cd videoprism
$ pip install .


Github: https://github.com/google-deepmind/videoprism
HF: https://huggingface.co/google/videoprism#model-description
Arxiv: https://arxiv.org/pdf/2402.13217
Blogpost: https://research.google/blog/videoprism-a-foundational-visual-encoder-for-video-understanding/

#AI #VideoAI #DeepLearning #GoogleDeepMind #LLM #multimodal
🔥3
Forwarded from Machinelearning
🎙️ NVIDIA выпустили Canary-1B v2 — открытую модель для распознавания и перевода речи, которая работает с 25 европейскими языками.

Что она умеет:
- 📝 Точное ASR (распознавание речи) и AST (перевод речи) между английским и 24 другими языками.
- Автоматическая пунктуация, капитализация и точные таймстампы до слова.
- Поддержка русского, французского, немецкого, испанского и многих других языков.

Чем интересна
- До 10× быстрее инференс, чем у моделей в 3 раза больше.
- Уже показывает state-of-the-art точность среди открытых моделей на Hugging Face.
- Лицензия CC-BY-4.0 — можно свободно использовать в проектах.

Под капотом:
- Архитектура: FastConformer-энкодер + Transformer-декодер (~978M параметров).
- Форматы: .wav и .flac, моно 16 кГц.
- Легко интегрируется через NVIDIA NeMo или прямо с Hugging Face.

Где пригодится:
🟢 голосовые ассистенты
🟢 субтитры и перевод видео
🟢 чат-боты с речевым вводом
🟢 real-time анализ речи

Всего ~978M параметров → легче, быстрее и дешевле в использовании, чем большие модели конкурентов.

🟠 Попробовать можно здесь: https://huggingface.co/nvidia/canary-1b-v2
🟠SET: https://huggingface.co/datasets/nvidia/Granary
🟠PARAKEET: https://huggingface.co/nvidia/parakeet-tdt-0.6b-v3

@ai_machinelearning_big_data


#AI #NVIDIA #SpeechRecognition #ASR #AST #Multilingual #MachineLearning #DeepLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍3🥰1
Forwarded from Machinelearning
🧩 Новая архитектура нейросетей от Samsung: Tiny Recursive Model (TRM) - обошла DeepSeek-R1, Gemini 2.5 Pro и o3-mini в задачах рассуждения ARC-AGI 1 и ARC-AGI 2.

✔️ Размер модели - всего 7 миллионов параметров и около 1000 обучающих примеров.

Это меньше в 10 000 раз, чем у современных LLM, но результат лучше.

Как работает TRM:

1️⃣ Черновой ответ: модель сразу формирует быстрый набросок решения, а не пишет его по словам.
2️⃣ Скрачпад: создаёт внутреннее пространство для логики и промежуточных рассуждений.
3️⃣ Самокритика: многократно (6 раз) проверяет свои рассуждения, уточняя и исправляя ошибки.
4️⃣ Переписывание: на основе улучшённой логики создаёт новую, более точную версию ответа.
5️⃣ Цикличность: повторяет процесс до 16 раз, пока не достигнет уверенного, логически цельного решения.

💡 Чем интересна модель:

- Меньше затрат на вычисления, а результат выше; высокая эффективность при низких издержках.
- Доказательство того, что собственная логика и архитектура могут быть сильнее простого размера модели. Можно коротко описать ее: «думай, прежде чем действовать».
- Мощные рассуждающие системы становятся доступными даже без огромных кластеров, модель можно запускать на ограниченных ресурсах.

Это не просто «компактаная LLM», это другой способ мышления: модель, которая действительно *думает, прежде чем говорить*.

🟠Статья: https://arxiv.org/abs/2510.04871v1
🟠Github: https://github.com/SamsungSAILMontreal/TinyRecursiveModels

@ai_machinelearning_big_data

#TinyRecursiveModels #TRM #DeepLearning #NeuralNetworks
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
10👍7🔥1
Forwarded from Machinelearning
🔥 Сенсей Карпаты выложил новый репозиторий - полный пайплайн обучения LLM с нуля

В проекте есть всё, чтобы собрать свой ChatGPT-клон за $100 и 4 часа:

> • токенизатор
> • pretraining
> • SFT (supervised fine-tuning)
> • RL (reinforcement learning)
> • оценка модели (eval)

Всего 8 000 строк кода, без лишних зависимостей - идеальный учебный пример, чтобы понять, как реально устроено обучение больших языковых моделей.

💡 Это проект из его нового курса Карпаты LLM101n, и отличная возможность прокачать свои ML-навыки на практике.

Можно арендовать GPU в облаке и запустить всё самому - код уже готов к запуску.

Если запустить обучение модели nanochat на облачном GPU-сервере (например, 8×H100), то примерно через 12 часов обучения (стоимость ~300–400 $) модель достигает уровня GPT-2 по качеству на тестовых наборах (CORE-score).

А если тренировать около 40 часов (затраты ~1000 $), решает простые задачи по математике и коду, набирая:
- 40+ на MMLU
- 70+ на ARC-Easy
- 20+ на GSM8K

🧠 Это бесплатная практика топ уровня от мастера, которую не стоит упускать.

🟠GitHub:https://github.com/karpathy/nanochat
🟠Технические детали: https://github.com/karpathy/nanochat/discussions/1

@ai_machinelearning_big_data


#LLM #nanochat #MachineLearning #DeepLearning #AI #GPT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥94👍1
🤖 WorldVLA - объединение VLA и World Model в единое автогенеративное ядро

Alibaba представила WorldVLA, новый шаг к созданию *авторегрессионной модели мира действий*
где одна архитектура одновременно предсказывает следующие кадры и действия агента.

🧠 Ключевая идея
WorldVLA объединяет Vision-Language-Action (VLA) и World Model в одном трансформере:
- Вход: *(image + language + action)*
- Выход: *(image + language + action)*
То есть модель не только «понимает» физику мира, но и «учится действовать» в нём.

⚙️ Как это работает
- Архитектура: единый Transformer, обучаемый одновременно на данных action-моделей и world-моделей.
- Лосс: комбинированная функция, объединяющая предсказание действий и состояния мира.
- Трюк с attention mask: маскируются предыдущие действия при генерации текущих —
этот приём значительно улучшает качество «action-chunk» генерации.

📊 Результаты
Тестировалось в симуляции (LIBERO benchmark):
WorldVLA превзошла отдельно обученные action-модели и world-модели.

💬 По сути, Alibaba делает следующий шаг к AGI-агентам с реальным пониманием физики,
где одно ядро может предсказывать, воспринимать и действовать — как единая система.

📄 Paper: https://arxiv.org/abs/2506.21539
💻 Code: https://github.com/alibaba-damo-academy/WorldVLA

#AI #WorldModel #VLA #DeepLearning #Alibaba #Transformers
4🔥2