Машинное обучение RU
17.7K subscribers
1.57K photos
207 videos
11 files
2.04K links
Все о машинном обучении

админ - @workakkk

@data_analysis_ml - анализ даннных

@ai_machinelearning_big_data - Machine learning

@itchannels_telegram -лучшие ит-каналы

@pythonl - Python

@pythonlbooks- python 📚

@datascienceiot - 📚

РКН: clck.ru/3FmrUw
Download Telegram
Forwarded from Machinelearning
🧩 Новая архитектура нейросетей от Samsung: Tiny Recursive Model (TRM) - обошла DeepSeek-R1, Gemini 2.5 Pro и o3-mini в задачах рассуждения ARC-AGI 1 и ARC-AGI 2.

✔️ Размер модели - всего 7 миллионов параметров и около 1000 обучающих примеров.

Это меньше в 10 000 раз, чем у современных LLM, но результат лучше.

Как работает TRM:

1️⃣ Черновой ответ: модель сразу формирует быстрый набросок решения, а не пишет его по словам.
2️⃣ Скрачпад: создаёт внутреннее пространство для логики и промежуточных рассуждений.
3️⃣ Самокритика: многократно (6 раз) проверяет свои рассуждения, уточняя и исправляя ошибки.
4️⃣ Переписывание: на основе улучшённой логики создаёт новую, более точную версию ответа.
5️⃣ Цикличность: повторяет процесс до 16 раз, пока не достигнет уверенного, логически цельного решения.

💡 Чем интересна модель:

- Меньше затрат на вычисления, а результат выше; высокая эффективность при низких издержках.
- Доказательство того, что собственная логика и архитектура могут быть сильнее простого размера модели. Можно коротко описать ее: «думай, прежде чем действовать».
- Мощные рассуждающие системы становятся доступными даже без огромных кластеров, модель можно запускать на ограниченных ресурсах.

Это не просто «компактаная LLM», это другой способ мышления: модель, которая действительно *думает, прежде чем говорить*.

🟠Статья: https://arxiv.org/abs/2510.04871v1
🟠Github: https://github.com/SamsungSAILMontreal/TinyRecursiveModels

@ai_machinelearning_big_data

#TinyRecursiveModels #TRM #DeepLearning #NeuralNetworks
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
10👍7🔥1