🤖 OpenAI запустила протокол для покупок через ChatGPT
OpenAI представила Agentic Commerce Protocol (ACP) — открытый стандарт, который позволяет совершать покупки прямо в ChatGPT одним кликом. Протокол разработан совместно со Stripe и уже работает с цифровыми товарами Etsy.
Что такое ACP:
• Определяет взаимодействие между ИИ-агентами, продавцами и платежными системами
• Покрывает весь цикл электронной коммерции: от поиска до оплаты и доставки
• Использует JSON-формат для каталогов, сессий оформления заказов и обновлений
• Агенты не просто перенаправляют на сайт, а напрямую запрашивают цены, доставку и налоги
Ключевые особенности:
🔓 Открытый исходный код (Apache-2.0), но пока в статусе черновика
💳 Интеграция со Stripe "одной строкой кода", поддержка других процессоров через Delegated Payments
🔐 Токены с ограниченным сроком действия и привязкой к продавцу и сумме
📋 Полная история транзакций для аудита
⚡️ Обновление фидов товаров каждые 15 минут для актуальности
ACP vs Google AP2 📊
Фокус:
• ACP — полный цикл коммерции от поиска до доставки
• AP2 — только платежная часть агентской коммерции
Платежи:
• ACP — через Stripe + поддержка других через Delegated Payment
• AP2 — карты, банковские переводы, стейблкоины, криптовалюты
Авторизация:
• ACP — токены с ограничениями по продавцу и сумме
• AP2 — "мандаты" (подписанные пользователем авторизации)
Как это работает:
1️⃣ Фид товаров — продавец предоставляет структурированные данные (TSV, CSV, XML, JSON)
2️⃣ Оформление заказа — ChatGPT собирает данные покупателя и создает сессию
3️⃣ Обработка платежа — продавец валидирует и обрабатывает через свою систему
4️⃣ Вебхуки — система отправляет события о статусе заказа
5️⃣ Завершение — подтверждение или отклонение заказа
Технические детали:
• REST API с 5 обязательными эндпоинтами
• HTTPS и JSON для всех запросов
• Поддержка идемпотентности и подписей запросов
• Статусы заказов: created → manual_review → confirmed → shipped → fulfilled
Ограничения:
⚠️ Пока доступно только одобренным партнерам
⚠️ OpenAI не является продавцом — все транзакции через системы продавцов
⚠️ Требуется прохождение проверок соответствия
Источники:
🔗 [Документация OpenAI]
🔗 [Спецификация Agentic Checkout]
🔗 [Ключевые концепции ACP]
@llm_notes
#agentic_commerce #chatgpt #ecommerce #ai_agents #openai #acp #ap2
OpenAI представила Agentic Commerce Protocol (ACP) — открытый стандарт, который позволяет совершать покупки прямо в ChatGPT одним кликом. Протокол разработан совместно со Stripe и уже работает с цифровыми товарами Etsy.
Что такое ACP:
• Определяет взаимодействие между ИИ-агентами, продавцами и платежными системами
• Покрывает весь цикл электронной коммерции: от поиска до оплаты и доставки
• Использует JSON-формат для каталогов, сессий оформления заказов и обновлений
• Агенты не просто перенаправляют на сайт, а напрямую запрашивают цены, доставку и налоги
Ключевые особенности:
🔓 Открытый исходный код (Apache-2.0), но пока в статусе черновика
💳 Интеграция со Stripe "одной строкой кода", поддержка других процессоров через Delegated Payments
🔐 Токены с ограниченным сроком действия и привязкой к продавцу и сумме
📋 Полная история транзакций для аудита
⚡️ Обновление фидов товаров каждые 15 минут для актуальности
ACP vs Google AP2 📊
Фокус:
• ACP — полный цикл коммерции от поиска до доставки
• AP2 — только платежная часть агентской коммерции
Платежи:
• ACP — через Stripe + поддержка других через Delegated Payment
• AP2 — карты, банковские переводы, стейблкоины, криптовалюты
Авторизация:
• ACP — токены с ограничениями по продавцу и сумме
• AP2 — "мандаты" (подписанные пользователем авторизации)
Как это работает:
1️⃣ Фид товаров — продавец предоставляет структурированные данные (TSV, CSV, XML, JSON)
2️⃣ Оформление заказа — ChatGPT собирает данные покупателя и создает сессию
3️⃣ Обработка платежа — продавец валидирует и обрабатывает через свою систему
4️⃣ Вебхуки — система отправляет события о статусе заказа
5️⃣ Завершение — подтверждение или отклонение заказа
Технические детали:
• REST API с 5 обязательными эндпоинтами
• HTTPS и JSON для всех запросов
• Поддержка идемпотентности и подписей запросов
• Статусы заказов: created → manual_review → confirmed → shipped → fulfilled
Ограничения:
⚠️ Пока доступно только одобренным партнерам
⚠️ OpenAI не является продавцом — все транзакции через системы продавцов
⚠️ Требуется прохождение проверок соответствия
Источники:
🔗 [Документация OpenAI]
🔗 [Спецификация Agentic Checkout]
🔗 [Ключевые концепции ACP]
@llm_notes
#agentic_commerce #chatgpt #ecommerce #ai_agents #openai #acp #ap2
❤2
🚀 DeepSeek представила V3.2-Exp с технологией разреженного внимания
Опенсорс также не остался в стороне от потока позитивных новостей :)
Компания DeepSeek выпустила экспериментальную версию своей модели V3.2-Exp, которая использует новый механизм разреженного внимания (DeepSeek Sparse Attention).
Ключевые особенности:
• Снижение стоимости обработки длинных контекстов на 85%
• Обработка только 2K наиболее важных токенов из 128K
• Сохранение качества на уровне V3.1-Terminus
• Снижение цен API более чем на 50%
Технические характеристики:
🔹 Модель игнорирует нерелевантные токены
🔹 Фокусируется на топ-2K токенах из контекста 128K
🔹 Значительное улучшение эффективности обучения и инференса
Доступность:
1️⃣ Hugging Face
2️⃣ Официальное приложение DeepSeek
3️⃣ Web-интерфейс
4️⃣ API с пониженными ценами (-50%)
Я жду пока появится на openrouter.ai или requesty.ai чтобы потестировать на нескольких задачах AI-кодинга средней сложности как чуть ранее делал для модели code-supernova здесь (тестировал через github codespaces - очень удобно, не нужно загружать свой ПК)
Производительность:
Тестирование показало сопоставимые результаты с V3.1-Terminus по основным бенчмаркам, включая MMLU-Pro, GPQA-Diamond и LiveCodeBench.
Модель доступна под лицензией MIT и поддерживается популярными фреймворками для инференса SGLang и vLLM 📊
Источники:
🔗 [GitHub репозиторий]
🔗 [Hugging Face]
@llm_notes
#deepseek #sparseattention #longcontext #llm #opensource
Опенсорс также не остался в стороне от потока позитивных новостей :)
Компания DeepSeek выпустила экспериментальную версию своей модели V3.2-Exp, которая использует новый механизм разреженного внимания (DeepSeek Sparse Attention).
Ключевые особенности:
• Снижение стоимости обработки длинных контекстов на 85%
• Обработка только 2K наиболее важных токенов из 128K
• Сохранение качества на уровне V3.1-Terminus
• Снижение цен API более чем на 50%
Технические характеристики:
🔹 Модель игнорирует нерелевантные токены
🔹 Фокусируется на топ-2K токенах из контекста 128K
🔹 Значительное улучшение эффективности обучения и инференса
Доступность:
1️⃣ Hugging Face
2️⃣ Официальное приложение DeepSeek
3️⃣ Web-интерфейс
4️⃣ API с пониженными ценами (-50%)
Я жду пока появится на openrouter.ai или requesty.ai чтобы потестировать на нескольких задачах AI-кодинга средней сложности как чуть ранее делал для модели code-supernova здесь (тестировал через github codespaces - очень удобно, не нужно загружать свой ПК)
Производительность:
Тестирование показало сопоставимые результаты с V3.1-Terminus по основным бенчмаркам, включая MMLU-Pro, GPQA-Diamond и LiveCodeBench.
Модель доступна под лицензией MIT и поддерживается популярными фреймворками для инференса SGLang и vLLM 📊
Источники:
🔗 [GitHub репозиторий]
🔗 [Hugging Face]
@llm_notes
#deepseek #sparseattention #longcontext #llm #opensource
❤3👍1
🔬 Paper2Agent: превращение научных статей в интерактивных AI-агентов
Исследователи представили новый подход к работе с научными публикациями. Вместо традиционного формата PDF + код, система Paper2Agent автоматически преобразует статьи в интерактивных AI-агентов.
Как это работает:
• Система анализирует научную статью и связанный код
• Автоматически настраивает рабочую среду
• Извлекает инструменты из репозитория
• Тестирует их до получения корректных результатов
• Упаковывает всё в MCP-сервер для взаимодействия
Основные преимущества:
🎯 Устраняет необходимость ручной настройки окружения
⚡️ Экономит время на воспроизведение результатов
🔧 Позволяет взаимодействовать с методами через естественный язык
📊 Обеспечивает 100% точность воспроизведения результатов
Принцип работы:
1️⃣ Статья преобразуется в MCP-сервер
2️⃣ Сервер объединяет инструменты, данные и инструкции
3️⃣ AI-агент подключается к серверу
4️⃣ Пользователь задаёт вопросы на естественном языке
5️⃣ Система выполняет анализ и возвращает результаты
Технология протестирована на сложных случаях включая AlphaGenome, TISSUE и Scanpy. Все тесты показали полное соответствие оригинальным результатам.
Я проводил свои тесты - результаты в комментариях.
📄 Статья: [Paper2Agent: Reimagining Research Papers As Interactive and Reliable AI Agents]
• Github проекта: https://github.com/jmiao24/Paper2Agent
• DeepWiki: https://deepwiki.com/jmiao24/Paper2Agent
@llm_notes
P.S. если у кого-то есть на примете интересные научные статьи с кодовой базой, которые можно было бы так "превратить" в ИИ-агента и протестировать, то напишите, пожалуйста, в комментариях.
#paper2agent #research #ai #automation #science
Исследователи представили новый подход к работе с научными публикациями. Вместо традиционного формата PDF + код, система Paper2Agent автоматически преобразует статьи в интерактивных AI-агентов.
Как это работает:
• Система анализирует научную статью и связанный код
• Автоматически настраивает рабочую среду
• Извлекает инструменты из репозитория
• Тестирует их до получения корректных результатов
• Упаковывает всё в MCP-сервер для взаимодействия
Основные преимущества:
🎯 Устраняет необходимость ручной настройки окружения
⚡️ Экономит время на воспроизведение результатов
🔧 Позволяет взаимодействовать с методами через естественный язык
📊 Обеспечивает 100% точность воспроизведения результатов
Принцип работы:
1️⃣ Статья преобразуется в MCP-сервер
2️⃣ Сервер объединяет инструменты, данные и инструкции
3️⃣ AI-агент подключается к серверу
4️⃣ Пользователь задаёт вопросы на естественном языке
5️⃣ Система выполняет анализ и возвращает результаты
Технология протестирована на сложных случаях включая AlphaGenome, TISSUE и Scanpy. Все тесты показали полное соответствие оригинальным результатам.
Я проводил свои тесты - результаты в комментариях.
📄 Статья: [Paper2Agent: Reimagining Research Papers As Interactive and Reliable AI Agents]
• Github проекта: https://github.com/jmiao24/Paper2Agent
• DeepWiki: https://deepwiki.com/jmiao24/Paper2Agent
@llm_notes
P.S. если у кого-то есть на примете интересные научные статьи с кодовой базой, которые можно было бы так "превратить" в ИИ-агента и протестировать, то напишите, пожалуйста, в комментариях.
#paper2agent #research #ai #automation #science
arXiv.org
Paper2Agent: Reimagining Research Papers As Interactive and...
We introduce Paper2Agent, an automated framework that converts research papers into AI agents. Paper2Agent transforms research output from passive artifacts into active systems that can accelerate...
❤3
Media is too big
VIEW IN TELEGRAM
🎥 Lovable провели live-демонстрацию нового Cloud + AI на стриме
В дополнении к недавнему анонсу нового облака команда Lovable провела сегодня прямой эфир (1 час), где в реальном времени показала возможности недавно запущенных Lovable Cloud и Lovable AI.
Что показали на стриме:
🔹 Создание приложения для генерации изображений с нуля
🔹 Автоматическое подключение базы данных и аутентификации
🔹 Интеграцию ИИ без настройки API-ключей
🔹 Добавление системы подписок через Stripe
Демонстрация в цифрах:
1️⃣ Лендинг создан за несколько минут с автогенерацией изображений
2️⃣ Пользовательские аккаунты настроены автоматически
3️⃣ ИИ-генерация изображений работает из коробки
4️⃣ Профили пользователей с галереей изображений
5️⃣ Темы для стилизации (киберпанк, ретро, Studio Ghibli)
Новые возможности Cloud:
• Встроенная панель управления базой данных
• Мониторинг пользователей и активности
• Управление файловым хранилищем
• Отслеживание использования ИИ-моделей
• Логи для отладки
Интересные моменты стрима:
⚡️ Разработчики импровизировали и добавляли функции по запросам зрителей
⚡️ Показали загрузку изображений для контекста ИИ-генерации
⚡️ Продемонстрировали интеграцию с платежными системами
⚡️ Обсудили планы по поддержке других провайдеров платежей
Технические детали:
🔧 Хостинг: преимущественно в ЕС для соответствия GDPR
🔧 Модели: Google Gemini бесплатно до конца недели
🔧 Совместимость: полная поддержка Supabase сохранена
🔧 Производительность: улучшения на 20% с новой Claude 4.5
Ценообразование остается доступным:
💰 $25/месяц включенного использования Cloud
💰 $1/месяц включенного использования AI
💰 Оплата только при превышении лимитов
Стрим показал, насколько упростилось создание полнофункциональных приложений с ИИ — от идеи до работающего продукта за один сеанс без написания кода и настройки инфраструктуры.
• Подробный интерактивный транскрипт стрима (с промптами) здесь.
• Краткая нарезка наиболее интересных моментов (3 мин) - прикреплена к заметке.
@llm_notes
#lovable #livestream #vibecoding #ai #cloud #transcript
В дополнении к недавнему анонсу нового облака команда Lovable провела сегодня прямой эфир (1 час), где в реальном времени показала возможности недавно запущенных Lovable Cloud и Lovable AI.
Что показали на стриме:
🔹 Создание приложения для генерации изображений с нуля
🔹 Автоматическое подключение базы данных и аутентификации
🔹 Интеграцию ИИ без настройки API-ключей
🔹 Добавление системы подписок через Stripe
Демонстрация в цифрах:
1️⃣ Лендинг создан за несколько минут с автогенерацией изображений
2️⃣ Пользовательские аккаунты настроены автоматически
3️⃣ ИИ-генерация изображений работает из коробки
4️⃣ Профили пользователей с галереей изображений
5️⃣ Темы для стилизации (киберпанк, ретро, Studio Ghibli)
Новые возможности Cloud:
• Встроенная панель управления базой данных
• Мониторинг пользователей и активности
• Управление файловым хранилищем
• Отслеживание использования ИИ-моделей
• Логи для отладки
Интересные моменты стрима:
⚡️ Разработчики импровизировали и добавляли функции по запросам зрителей
⚡️ Показали загрузку изображений для контекста ИИ-генерации
⚡️ Продемонстрировали интеграцию с платежными системами
⚡️ Обсудили планы по поддержке других провайдеров платежей
Технические детали:
🔧 Хостинг: преимущественно в ЕС для соответствия GDPR
🔧 Модели: Google Gemini бесплатно до конца недели
🔧 Совместимость: полная поддержка Supabase сохранена
🔧 Производительность: улучшения на 20% с новой Claude 4.5
Ценообразование остается доступным:
💰 $25/месяц включенного использования Cloud
💰 $1/месяц включенного использования AI
💰 Оплата только при превышении лимитов
Стрим показал, насколько упростилось создание полнофункциональных приложений с ИИ — от идеи до работающего продукта за один сеанс без написания кода и настройки инфраструктуры.
• Подробный интерактивный транскрипт стрима (с промптами) здесь.
• Краткая нарезка наиболее интересных моментов (3 мин) - прикреплена к заметке.
@llm_notes
#lovable #livestream #vibecoding #ai #cloud #transcript
👍5❤1
🤖 GenSpark представил Custom Super Agent
Компания GenSpark AI анонсировала новую функцию Custom Super Agent, которая позволяет создавать персонализированных AI-агентов с помощью одного текстового запроса.
Главная фишка:
Агенты задействуют всю мощь инструментов GenSpark AI. По сути, в таких агентов можно "заворачивать" готовые шаблоны для решения сложных задач и даже мульти-агентные цепочки с deep research, генерацией изображений и видео.
Основные возможности:
• Создание ИИ-агентов для различных задач: еженедельные отчеты (например, по AI-индустрии), ежедневный анализ акций, генерация мемов, генерация обучающих курсов по разным тематикам, анализ CV под вакансию и т.д.
• Простое создание через текстовое описание задачи
• Повторное использование созданных агентов
• Возможность упоминания агентов в любом месте платформы через @
Совместное использование:
📤 Теперь такими супер-агентами пользователи GenSpark могут делиться друг с другом!
🔍 Поиск и использование агентов в Custom Super Agent Store
📌 Добавление понравившихся агентов в закладки
💳 Если используете чужого агента (а по сути автоматизированную мульти-агентную цепочку, опирающуюся на все возможности GenSpark), то он расходует кредиты вашей учетной записи
Хакатон (15-21 октября):
Проходит хакатон по созданию кастомных агентов с призовым фондом в виде кэша ($500 или $1000) или кредитов платформы. Детали есть на скриншоте.
Пример из практики:
Я создал и разместил в Custom Super Agent Store ИИ-агента "MoneyPrinter AI Video Generator", который анализирует трендовые новости по AI, выбирает наиболее виральные, генерирует скрипт и видео-ролик в выбранном формате для соцсетей. Пример работы данного агента я прикрепил к заметке. Cебестоимость 30 сек ролика получилась порядка 5000-6000 кредитов (в следующий раз замерю точнее), это около $5.
В итоге получается мощный инструмент для создания и обмена агентными цепочками между пользователями в рамках платформы Genspark. Не хватает только API или MCP-интерфейса, чтобы созданных ИИ-агентов использовать внутри своих приложений.
@llm_notes
#genspark #agents #custom #multiagent #hackathon
Компания GenSpark AI анонсировала новую функцию Custom Super Agent, которая позволяет создавать персонализированных AI-агентов с помощью одного текстового запроса.
Главная фишка:
Агенты задействуют всю мощь инструментов GenSpark AI. По сути, в таких агентов можно "заворачивать" готовые шаблоны для решения сложных задач и даже мульти-агентные цепочки с deep research, генерацией изображений и видео.
Основные возможности:
• Создание ИИ-агентов для различных задач: еженедельные отчеты (например, по AI-индустрии), ежедневный анализ акций, генерация мемов, генерация обучающих курсов по разным тематикам, анализ CV под вакансию и т.д.
• Простое создание через текстовое описание задачи
• Повторное использование созданных агентов
• Возможность упоминания агентов в любом месте платформы через @
Совместное использование:
📤 Теперь такими супер-агентами пользователи GenSpark могут делиться друг с другом!
🔍 Поиск и использование агентов в Custom Super Agent Store
📌 Добавление понравившихся агентов в закладки
💳 Если используете чужого агента (а по сути автоматизированную мульти-агентную цепочку, опирающуюся на все возможности GenSpark), то он расходует кредиты вашей учетной записи
Хакатон (15-21 октября):
Проходит хакатон по созданию кастомных агентов с призовым фондом в виде кэша ($500 или $1000) или кредитов платформы. Детали есть на скриншоте.
Пример из практики:
Я создал и разместил в Custom Super Agent Store ИИ-агента "MoneyPrinter AI Video Generator", который анализирует трендовые новости по AI, выбирает наиболее виральные, генерирует скрипт и видео-ролик в выбранном формате для соцсетей. Пример работы данного агента я прикрепил к заметке. Cебестоимость 30 сек ролика получилась порядка 5000-6000 кредитов (в следующий раз замерю точнее), это около $5.
В итоге получается мощный инструмент для создания и обмена агентными цепочками между пользователями в рамках платформы Genspark. Не хватает только API или MCP-интерфейса, чтобы созданных ИИ-агентов использовать внутри своих приложений.
@llm_notes
#genspark #agents #custom #multiagent #hackathon
1❤6👍1
🚀 Manus 1.5: Обновление ИИ-платформы для разработки
Компания Manus выпустила версию 1.5 своей платформы с несколькими значимыми улучшениями.
Основные изменения:
⚡️ Ускоренный движок — задачи выполняются заметно быстрее благодаря оптимизации архитектуры
🎯 Повышенное качество вывода — интерфейсы, переходы и выравнивание стали более профессиональными и точными
📊 Неограниченный контекст — возможность работы с крупными проектами без потери данных и истории, что упрощает командную работу (немного про то, как manus делает context engineering, будет в следующей заметке)
🛠 App Builder — создание полноценных приложений с фронтендом, серверной логикой, базой данных и аутентификацией по одному запросу.
Я с использованием этого App Builder в 1 промпт сделал приложение по генерации картинок при помощи YandexART и Nano Banana (на выбор), результаты можно посмотреть в комментариях. Можно сравнить с приложением от Lovable, которое мной создавалось по тому же промпту чуть ранее.
Мне результат от Manus App Builder очень понравился. Похоже, что у нас есть новый лидер Vibe Coding'а с самым низким порогом входа. Весь предварительный ресерч, подготовка PRD и спецификации на разработку - все делается автоматически. Особенно меня порадовало, что добавить YandexART в этот генератор картинок оказалось предельно просто:
Чуть позже я напишу в комментариях как с добавленим YandexART справился Lovable и Genspark AI Developer.
Пару дней назад я для демонстрации заказчику делал простенького веб-бота на базе yandexart (исходники здесь) , использовал: Github Codespaces, claude code (частично онлайн claude code в рамках бета тестирования), а также поиск рабочих код-снипетов в yandex cloud ml sdk и примерно представляю уровень неудобств. К слову, онлайн Codex так и не смог мне сгенерировать рабочий код такого бота.
🖼 Генерация и поиск изображений — интеграция с пониманием намерений пользователя
Для кого актуально:
1️⃣ Разработчики, работающие с ИИ-инструментами
2️⃣ Команды, создающие веб-приложения
3️⃣ Специалисты по автоматизации процессов
4️⃣ Пользователи, работающие с большими объемами данных
Обновление направлено на повышение производительности и расширение возможностей платформы для решения сложных задач разработки.
Если к этому добавить еще возможность отправки задач в manus по email, интеграцию manus с внешними инструментами и зарождающийся в документации API интерфейс к продукту, то Manus в скором времени может стать самым крутым универсальным ИИ-помощником. Который можно будет использовать и в "личном" общении, и в программном коде.
@llm_notes
#manus #ai #vibecoding #automation #productivity #app
Компания Manus выпустила версию 1.5 своей платформы с несколькими значимыми улучшениями.
Основные изменения:
⚡️ Ускоренный движок — задачи выполняются заметно быстрее благодаря оптимизации архитектуры
🎯 Повышенное качество вывода — интерфейсы, переходы и выравнивание стали более профессиональными и точными
📊 Неограниченный контекст — возможность работы с крупными проектами без потери данных и истории, что упрощает командную работу (немного про то, как manus делает context engineering, будет в следующей заметке)
🛠 App Builder — создание полноценных приложений с фронтендом, серверной логикой, базой данных и аутентификацией по одному запросу.
Я с использованием этого App Builder в 1 промпт сделал приложение по генерации картинок при помощи YandexART и Nano Banana (на выбор), результаты можно посмотреть в комментариях. Можно сравнить с приложением от Lovable, которое мной создавалось по тому же промпту чуть ранее.
Мне результат от Manus App Builder очень понравился. Похоже, что у нас есть новый лидер Vibe Coding'а с самым низким порогом входа. Весь предварительный ресерч, подготовка PRD и спецификации на разработку - все делается автоматически. Особенно меня порадовало, что добавить YandexART в этот генератор картинок оказалось предельно просто:
добавь пожалуйста поддержку модели yandexart с необходимостью ввода credentials: folder id и api key (добавь ссылку на инструкцию где их взять https://telegra.ph/Kak-i-otkuda-brat-kredy-dlya-dostupa-k-YandexGPT-10-09)
. Чуть позже я напишу в комментариях как с добавленим YandexART справился Lovable и Genspark AI Developer.
Пару дней назад я для демонстрации заказчику делал простенького веб-бота на базе yandexart (исходники здесь) , использовал: Github Codespaces, claude code (частично онлайн claude code в рамках бета тестирования), а также поиск рабочих код-снипетов в yandex cloud ml sdk и примерно представляю уровень неудобств. К слову, онлайн Codex так и не смог мне сгенерировать рабочий код такого бота.
🖼 Генерация и поиск изображений — интеграция с пониманием намерений пользователя
Для кого актуально:
1️⃣ Разработчики, работающие с ИИ-инструментами
2️⃣ Команды, создающие веб-приложения
3️⃣ Специалисты по автоматизации процессов
4️⃣ Пользователи, работающие с большими объемами данных
Обновление направлено на повышение производительности и расширение возможностей платформы для решения сложных задач разработки.
Если к этому добавить еще возможность отправки задач в manus по email, интеграцию manus с внешними инструментами и зарождающийся в документации API интерфейс к продукту, то Manus в скором времени может стать самым крутым универсальным ИИ-помощником. Который можно будет использовать и в "личном" общении, и в программном коде.
@llm_notes
#manus #ai #vibecoding #automation #productivity #app
Telegram
Заметки LLM-энтузиаста Chat
или вот еще вариант приложения - "генератор изображений"
приложение генерируется в "одно касание" без необходимости что-то траблшутить
вот такой исходный промпт:
🚀 Создайте приложение-генератор изображений на базе ИИ с Google Gemini Nano
Используйте новейшую…
приложение генерируется в "одно касание" без необходимости что-то траблшутить
вот такой исходный промпт:
🚀 Создайте приложение-генератор изображений на базе ИИ с Google Gemini Nano
Используйте новейшую…
❤2
🤖 Claude Skills: новый способ расширения возможностей ИИ
Anthropic представила Claude Skills — систему для добавления специализированных навыков в модель Claude. Это простой, но эффективный подход к созданию ИИ-агентов.
Что такое Skills? 📁
Skills — это папки с инструкциями в формате Markdown, дополнительными скриптами и ресурсами. Claude загружает нужный навык только когда он релевантен задаче.
Как это работает:
• Каждый навык содержит YAML-метаданные с описанием
• Полные инструкции загружаются только при необходимости
• Экономия токенов: каждый навык занимает всего несколько десятков токенов в контексте
Примеры применения: 💡
• Создание документов (PDF, Word, Excel, PowerPoint)
• Генерация анимированных GIF для Slack
• Работа с данными и их визуализация
• Следование корпоративным стандартам
Преимущества перед MCP: ⚡️
• Простота: обычные Markdown-файлы вместо сложного протокола
• Эффективность: не требует тысяч токенов контекста
• Универсальность: работает с любыми моделями, поддерживающими выполнение кода
Технические требования: 🔧
Skills требуют доступа к файловой системе и возможности выполнения команд. Это делает их мощными, но требует безопасной песочницы.
Перспективы развития: 🚀
Простота создания и распространения Skills может привести к быстрому росту экосистемы специализированных навыков для ИИ-агентов.
Документация: docs.claude.com/en/docs/agents-and-tools/agent-skills/overview
Github: https://github.com/anthropics/skills
Статья в инженерном блоге: https://www.anthropic.com/engineering/equipping-agents-for-the-real-world-with-agent-skills
@llm_notes
#claude #agents #anthropic #skills #tools #mcp
Anthropic представила Claude Skills — систему для добавления специализированных навыков в модель Claude. Это простой, но эффективный подход к созданию ИИ-агентов.
Что такое Skills? 📁
Skills — это папки с инструкциями в формате Markdown, дополнительными скриптами и ресурсами. Claude загружает нужный навык только когда он релевантен задаче.
Как это работает:
• Каждый навык содержит YAML-метаданные с описанием
• Полные инструкции загружаются только при необходимости
• Экономия токенов: каждый навык занимает всего несколько десятков токенов в контексте
Примеры применения: 💡
• Создание документов (PDF, Word, Excel, PowerPoint)
• Генерация анимированных GIF для Slack
• Работа с данными и их визуализация
• Следование корпоративным стандартам
Преимущества перед MCP: ⚡️
• Простота: обычные Markdown-файлы вместо сложного протокола
• Эффективность: не требует тысяч токенов контекста
• Универсальность: работает с любыми моделями, поддерживающими выполнение кода
Технические требования: 🔧
Skills требуют доступа к файловой системе и возможности выполнения команд. Это делает их мощными, но требует безопасной песочницы.
Перспективы развития: 🚀
Простота создания и распространения Skills может привести к быстрому росту экосистемы специализированных навыков для ИИ-агентов.
Документация: docs.claude.com/en/docs/agents-and-tools/agent-skills/overview
Github: https://github.com/anthropics/skills
Статья в инженерном блоге: https://www.anthropic.com/engineering/equipping-agents-for-the-real-world-with-agent-skills
@llm_notes
#claude #agents #anthropic #skills #tools #mcp
🔥3❤1
Media is too big
VIEW IN TELEGRAM
🧠 Контекстная инженерия для AI-агентов: практические уроки от LangChain и Manus
В этот вторник на youtube канале Langchain опубликовали, пожалуй, один из лучших глубоких разборов контекстной инженерии в сети — часовой мастер-класс с реальными инсайтами от LangChain и Manus. Рассматриваются продвинутые техники для AI-агентов: выгрузка, сжатие и изоляция контекста, плюс свежий взгляд на многоуровневые пространства действий. Много практических выводов, никакой воды.
В продолжении темы подкаста про "Контекст-инжиниринг для AI-агентов: 5 ключевых принципов", который я разбирал в заметках ранее, команды LangChain и Manus провели детальный разбор одной из ключевых проблем современных AI-агентов — управления контекстом. Делюсь главными выводами.
🔍 Суть проблемы
AI-агенты накапливают огромное количество контекста через вызовы инструментов. Типичная задача требует ~50 вызовов, продакшн-агенты могут делать сотни ходов. При этом производительность моделей падает с ростом контекста — классический парадокс.
⚙️ Пять основных подходов к решению:
🔸 Выгрузка контекста — перенос данных в файловую систему вместо хранения в истории сообщений
🔸 Сокращение контекста — суммирование или сжатие информации (Claude 4.5 уже поддерживает из коробки)
🔸 Извлечение контекста — индексирование + семантический поиск vs простые файловые инструменты
🔸 Изоляция контекста — разделение между под-агентами с собственными контекстными окнами
🔸 Кэширование контекста — переиспользование вычислений
💡 Практические находки от Manus:
Компактизация vs Суммирование
• Компактизация — обратимое сжатие (убираю данные, которые можно восстановить из файлов)
• Суммирование — необратимое, но с сохранением ключевой информации в файлах
Многоуровневое пространство действий
1️⃣ Вызов функций — базовые атомарные операции
2️⃣ Утилиты песочницы — предустановленные команды Linux
3️⃣ Пакеты и API — Python-скрипты для сложных вычислений
Два паттерна изоляции контекста:
• Коммуникация — под-агент получает только инструкцию
• Разделение памяти — под-агент видит всю историю, но имеет свой промпт
📊 Практические советы:
• Используй структурированные схемы вместо свободного суммирования
• Приоритизируй форматы на основе строк для удобства grep/поиска
• Не превышай ~30 инструментов в контексте
• Тестируй архитектуру переключением между моделями разной силы
• Избегай чрезмерной инженерии — простота часто работает лучше
🎯 Главный вывод
Контекстная инженерия — это баланс между конфликтующими целями. Цель не в создании сложных систем, а в упрощении работы модели. Самые большие улучшения часто приходят от удаления лишнего, а не добавления нового.
📹 Дополнительно
• Оригинальное видео (1 час) по ссылке
• Краткая (7 мин) видео-нарезка основных тезисов обсуждения - прикрепил к заметке
• Интерактивный транскрипт с исходниками презентаций здесь (очень рекомендую хотя бы "пробежаться глазами" если нет времени смотреть оригинальное видео - там много интересных инсайтов)
@llm_notes
#context_engineering #agents #langchain #prompt_engineering #llm_optimization #manus #transcript
В этот вторник на youtube канале Langchain опубликовали, пожалуй, один из лучших глубоких разборов контекстной инженерии в сети — часовой мастер-класс с реальными инсайтами от LangChain и Manus. Рассматриваются продвинутые техники для AI-агентов: выгрузка, сжатие и изоляция контекста, плюс свежий взгляд на многоуровневые пространства действий. Много практических выводов, никакой воды.
В продолжении темы подкаста про "Контекст-инжиниринг для AI-агентов: 5 ключевых принципов", который я разбирал в заметках ранее, команды LangChain и Manus провели детальный разбор одной из ключевых проблем современных AI-агентов — управления контекстом. Делюсь главными выводами.
🔍 Суть проблемы
AI-агенты накапливают огромное количество контекста через вызовы инструментов. Типичная задача требует ~50 вызовов, продакшн-агенты могут делать сотни ходов. При этом производительность моделей падает с ростом контекста — классический парадокс.
⚙️ Пять основных подходов к решению:
🔸 Выгрузка контекста — перенос данных в файловую систему вместо хранения в истории сообщений
🔸 Сокращение контекста — суммирование или сжатие информации (Claude 4.5 уже поддерживает из коробки)
🔸 Извлечение контекста — индексирование + семантический поиск vs простые файловые инструменты
🔸 Изоляция контекста — разделение между под-агентами с собственными контекстными окнами
🔸 Кэширование контекста — переиспользование вычислений
💡 Практические находки от Manus:
Компактизация vs Суммирование
• Компактизация — обратимое сжатие (убираю данные, которые можно восстановить из файлов)
• Суммирование — необратимое, но с сохранением ключевой информации в файлах
Многоуровневое пространство действий
1️⃣ Вызов функций — базовые атомарные операции
2️⃣ Утилиты песочницы — предустановленные команды Linux
3️⃣ Пакеты и API — Python-скрипты для сложных вычислений
Два паттерна изоляции контекста:
• Коммуникация — под-агент получает только инструкцию
• Разделение памяти — под-агент видит всю историю, но имеет свой промпт
📊 Практические советы:
• Используй структурированные схемы вместо свободного суммирования
• Приоритизируй форматы на основе строк для удобства grep/поиска
• Не превышай ~30 инструментов в контексте
• Тестируй архитектуру переключением между моделями разной силы
• Избегай чрезмерной инженерии — простота часто работает лучше
🎯 Главный вывод
Контекстная инженерия — это баланс между конфликтующими целями. Цель не в создании сложных систем, а в упрощении работы модели. Самые большие улучшения часто приходят от удаления лишнего, а не добавления нового.
📹 Дополнительно
• Оригинальное видео (1 час) по ссылке
• Краткая (7 мин) видео-нарезка основных тезисов обсуждения - прикрепил к заметке
• Интерактивный транскрипт с исходниками презентаций здесь (очень рекомендую хотя бы "пробежаться глазами" если нет времени смотреть оригинальное видео - там много интересных инсайтов)
@llm_notes
#context_engineering #agents #langchain #prompt_engineering #llm_optimization #manus #transcript
❤3❤🔥3👍2