7 стратегий промптинга из "утечки" системного промпта Claude 4
Недавно в сети появился предполагаемый системный промпт Claude 4 объемом 10,000 слов. Независимо от его подлинности, документ содержит ценные принципы для создания эффективных промптов 📝
Я решил провести анализ этого системного промпта для Claude 4, используя Claude 4 :)
Вот здесь результат анализа
А тут универсальный промпт, который я использовал (формировал и улучшал его по методике, которую описывал чуть раньше).
Затем мне на глаза попалась интересная статья на medium про 7 стратегий промптинга, которые используются в системном промпте Claude 4
Что порадовало - выводы практически совпадают. Только мой промпт, выявил 6, а не 7 приемов. Ну и мне были интересны также рекомендации по улучшению имеющихся промптов от самой модели, которая должна им следовать :)
Ключевая идея: промпт — это не магическое заклинание, а конфигурационный файл операционной системы. 90% внимания уделяется предотвращению ошибок, и только 10% — желаемому результату.
Основные стратегии:
1️⃣ Якорение идентичности
Начинайте промпт с фиксированных фактов: идентичность модели, дата, основные возможности. Это снижает нагрузку на рабочую память и стабилизирует рассуждения.
2️⃣ Явные условные блоки
Используйте четкие конструкции "если X, то Y" для граничных случаев. Неопределенность приводит к непоследовательности — будьте конкретны.
3️⃣ Трехуровневая маршрутизация неопределенности
• Вечная информация → прямой ответ
• Медленно меняющаяся → ответ + предложение проверки
• Актуальная → немедленный поиск
4️⃣ Грамматика инструментов с контрпримерами
Показывайте как правильные, так и неправильные примеры использования API. Негативные примеры учат не хуже позитивных.
5️⃣ Бинарные правила стиля
Вместо размытых указаний ("будь краток") используйте четкие запреты ("никогда не начинай с лести", "никаких эмодзи без запроса").
6️⃣ Позиционное усиление
В длинных промптах повторяйте критические ограничения каждые 500 токенов — внимание модели ослабевает в длинном контексте.
7️⃣ Рефлексия после использования инструментов
Добавляйте паузу для "размышлений" после вызова функций. Это улучшает точность в многошаговых цепочках рассуждений 🤔 (то, что мой промпт-анализатор не обнаружил)
Практический вывод
Думайте о промптах как об операционных системах. Будьте точны в намерениях и не бойтесь "оборонительного программирования" — детально прописывайте, чего модель делать НЕ должна.
Декларативный подход "если X, всегда Y" часто эффективнее императивного "сначала X, потом Y" ⚡️
@llm_notes
#claude4 #ai_engineering #llm_optimization #prompt
Недавно в сети появился предполагаемый системный промпт Claude 4 объемом 10,000 слов. Независимо от его подлинности, документ содержит ценные принципы для создания эффективных промптов 📝
Я решил провести анализ этого системного промпта для Claude 4, используя Claude 4 :)
Вот здесь результат анализа
А тут универсальный промпт, который я использовал (формировал и улучшал его по методике, которую описывал чуть раньше).
Затем мне на глаза попалась интересная статья на medium про 7 стратегий промптинга, которые используются в системном промпте Claude 4
Что порадовало - выводы практически совпадают. Только мой промпт, выявил 6, а не 7 приемов. Ну и мне были интересны также рекомендации по улучшению имеющихся промптов от самой модели, которая должна им следовать :)
Ключевая идея: промпт — это не магическое заклинание, а конфигурационный файл операционной системы. 90% внимания уделяется предотвращению ошибок, и только 10% — желаемому результату.
Основные стратегии:
1️⃣ Якорение идентичности
Начинайте промпт с фиксированных фактов: идентичность модели, дата, основные возможности. Это снижает нагрузку на рабочую память и стабилизирует рассуждения.
2️⃣ Явные условные блоки
Используйте четкие конструкции "если X, то Y" для граничных случаев. Неопределенность приводит к непоследовательности — будьте конкретны.
3️⃣ Трехуровневая маршрутизация неопределенности
• Вечная информация → прямой ответ
• Медленно меняющаяся → ответ + предложение проверки
• Актуальная → немедленный поиск
4️⃣ Грамматика инструментов с контрпримерами
Показывайте как правильные, так и неправильные примеры использования API. Негативные примеры учат не хуже позитивных.
5️⃣ Бинарные правила стиля
Вместо размытых указаний ("будь краток") используйте четкие запреты ("никогда не начинай с лести", "никаких эмодзи без запроса").
6️⃣ Позиционное усиление
В длинных промптах повторяйте критические ограничения каждые 500 токенов — внимание модели ослабевает в длинном контексте.
7️⃣ Рефлексия после использования инструментов
Добавляйте паузу для "размышлений" после вызова функций. Это улучшает точность в многошаговых цепочках рассуждений 🤔 (то, что мой промпт-анализатор не обнаружил)
Практический вывод
Думайте о промптах как об операционных системах. Будьте точны в намерениях и не бойтесь "оборонительного программирования" — детально прописывайте, чего модель делать НЕ должна.
Декларативный подход "если X, всегда Y" часто эффективнее императивного "сначала X, потом Y" ⚡️
@llm_notes
#claude4 #ai_engineering #llm_optimization #prompt