Хабр / ML & AI
476 subscribers
5.44K links
Telegram-канал, где вы можете найти публикации из RSS-фидов тематических хабов "Машинное обучение" и "Искусственный интеллект" портала Хабр.

Данный канал не является официальным представительством платформы Хабр.

Администратор - @evilfreelancer
Download Telegram
Пишем свой PyTorch на NumPy. Часть 1

PyTorch — это мощный и гибкий фреймворк для машинного обучения, широко используемый для создания нейронных сетей. Он особенно популярен благодаря простоте использования, динамическим вычислительным графам и богатой экосистеме инструментов для обучения моделей.

В этой статье мы реализуем собственную библиотеку машинного обучения на NumPy!

Читать далее

#pytorch #python #numpy #neural_networks #from_scratch | @habr_ai
Пишем свой PyTorch на NumPy. Часть 2. Добавляем новые слои

PyTorch — это мощный и гибкий фреймворк для машинного обучения, широко используемый для создания нейронных сетей. Он особенно популярен благодаря простоте использования, динамическим вычислительным графам и богатой экосистеме инструментов для обучения моделей.

В этой статье мы продолжим реализовывать собственную библиотеку машинного обучения на NumPy!

Читать далее

#pytorch #python #numpy #neuralnetworks #from_scratch | @habr_ai
Пишем свой PyTorch на NumPy. Часть 3. Строим граф вычислений

PyTorch — это мощный и гибкий фреймворк для машинного обучения, широко используемый для создания нейронных сетей. Он особенно популярен благодаря простоте использования, динамическим вычислительным графам и богатой экосистеме инструментов для обучения моделей. Для использования этого фреймворка, часто достаточно поверхностно понимать работу алгоритмов машинного обучения.

В этой статье мы продолжим реализацию собственный библиотеки машинного обучения на NumPy!

Читать далее

#python #pytorch #numpy #neural_networks #from_scratch | @habr_ai
Пишем свой PyTorch на NumPy. ФИНАЛ. Запускаем GPT-2

PyTorch — это мощный и гибкий фреймворк для машинного обучения, широко используемый для создания нейронных сетей. Он особенно популярен благодаря простоте использования, динамическим вычислительным графам и богатой экосистеме инструментов для обучения моделей. Для использования этого фреймворка, часто достаточно поверхностно понимать работу алгоритмов машинного обучения.

В этой части мы будем писать инференс код для GPT2 на собственной библиотеке! Читать далее

#python #pytorch #numpy #neural_networks #from_scratch | @habr_ai