Обучение модели токсификации текстов с помощью TorchTune, подробное руководство
Приветствую, хабровчане!
Сегодня пятница, поэтому предлагаю немного пошалить и поговорить о слегка необычном, но весьма забавном проекте обучения нейросетевой модели на базе LLaMA2 7B, которая умеет превращать невинные предложения на русском языке в чуть более "токсичные" их версии.
Но обучать модель мы будем не абы как, а при помощи недавно вышедшего в свет проекта под названием TorchTune, так как надо ведь пробовать новые инструменты, иными словами, предлагаю соединить тему интересную с темой полезной.
Так что пристегнитесь, будет весело и слегка токсично! Читать далее
#torch #torchtune #detoxification #toxification #llama 2 #levenshtein #llm #nlp #huggingface | @habr_ai
Приветствую, хабровчане!
Сегодня пятница, поэтому предлагаю немного пошалить и поговорить о слегка необычном, но весьма забавном проекте обучения нейросетевой модели на базе LLaMA2 7B, которая умеет превращать невинные предложения на русском языке в чуть более "токсичные" их версии.
Но обучать модель мы будем не абы как, а при помощи недавно вышедшего в свет проекта под названием TorchTune, так как надо ведь пробовать новые инструменты, иными словами, предлагаю соединить тему интересную с темой полезной.
Так что пристегнитесь, будет весело и слегка токсично! Читать далее
#torch #torchtune #detoxification #toxification #llama 2 #levenshtein #llm #nlp #huggingface | @habr_ai
Хабр
Обучение модели токсификации текстов с помощью TorchTune, подробное руководство
Приветствую, хабровчане! Сегодня пятница, поэтому предлагаю немного пошалить и поговорить о слегка необычном, но весьма забавном проекте обучения нейросетевой модели на базе LLaMA 2 7B , которая умеет...
🔥1
Кластерное обучение нейросетей
Multi gpu training overview
Если обучение модели на одном графическом процессоре происходит слишком медленно или если веса модели не помещаются в VRAM, переход на обучение с несколькими графическими процессорами (или с несколькими устройствами с несколькими графическими процессорами в каждом) может быть целесообразным вариантом.
Ниже рассмотрим некоторые стратегии по масштабируемости обучения между несколькими GPU или нодами.
Глобально следует рассмотреть 3 сценария
Читать далее
#torch #ml #llm #train #finetune | @habr_ai
Multi gpu training overview
Если обучение модели на одном графическом процессоре происходит слишком медленно или если веса модели не помещаются в VRAM, переход на обучение с несколькими графическими процессорами (или с несколькими устройствами с несколькими графическими процессорами в каждом) может быть целесообразным вариантом.
Ниже рассмотрим некоторые стратегии по масштабируемости обучения между несколькими GPU или нодами.
Глобально следует рассмотреть 3 сценария
Читать далее
#torch #ml #llm #train #finetune | @habr_ai
Хабр
Кластерное обучение нейросетей
Multi gpu training overview Если обучение модели на одном графическом процессоре происходит слишком медленно или если веса модели не помещаются в VRAM, переход на обучение с несколькими графическими...
ResNet-18: ищем динозавров или упражнения с векторами
Уверен, читатели хабра знают правильный ответ на вопрос - какова вероятность встретить динозавра на улице? И уж точно не растеряются когда эта встреча произойдет. Но что делать, если нужно найти конкретного динозавра на конкретном изображении?
Читать далее
#ml #torch #computer_vision #resnet #matching | @habr_ai
Уверен, читатели хабра знают правильный ответ на вопрос - какова вероятность встретить динозавра на улице? И уж точно не растеряются когда эта встреча произойдет. Но что делать, если нужно найти конкретного динозавра на конкретном изображении?
Читать далее
#ml #torch #computer_vision #resnet #matching | @habr_ai
Хабр
ResNet-18: ищем динозавров или упражнения с векторами
Сегодня потестируем ResNet-18 в задаче "матчинга" изображений, в задаче, к которой эту модель не готовили. А именно, попробуем искать динозавров на изображении по их признакам, выделенным с помощью...
Практика: мой опыт интеграции более 50 нейронных сетей в один проект
Статья основана на полутора годах работы по внедрению нейронных сетей в веб-приложение с открытым исходным кодом. В ней собраны практические лайфхаки для решения реальных задач и преодоления сложностей, с которыми сталкиваются разработчики. Преодолеть открытие
#опыт #лайфхаки #torch #onnxruntime #нейронные_сети #cuda #python #github #lifehack #исскуственный_интеллект | @habr_ai
Статья основана на полутора годах работы по внедрению нейронных сетей в веб-приложение с открытым исходным кодом. В ней собраны практические лайфхаки для решения реальных задач и преодоления сложностей, с которыми сталкиваются разработчики. Преодолеть открытие
#опыт #лайфхаки #torch #onnxruntime #нейронные_сети #cuda #python #github #lifehack #исскуственный_интеллект | @habr_ai
Хабр
Практика: мой опыт интеграции более 50 нейронных сетей в один проект
Полтора года назад я начал работу над проектом с открытым исходным кодом, который постепенно рос и развивался. Вдохновившись проектом AUTOMATIC1111 , на тот момент только появившимся, я добавлял всё...
🔥1
Всё что нужно знать про torch.sparse
Разработчики PyTorch предоставили модуль torch.sparse для работы с разреженными тензорами, где большинство элементов – нули. Зачем это нужно? Представьте матрицу смежности графа, сильно обрезанную сеть или облако точек – хранить такие данные плотным массивом без надобности расточительно. Разрежённая структура сохраняет только ненулевые элементы и их индексы, что сильно экономит память и ускоряет вычисления. Например, матрица размером 10,000 на 10,000 с 100 000 ненулевых float-значений в разрежённом COO-формате займёт не 400 МБ, а около 2 МБ.
Несмотря на перспективы, API разрежённых тензоров в PyTorch пока в бете и может менять крошечные детали. Будьте к этому готовы: часть операций поддерживается, часть – нет, и некоторые автоград-ячейки пока работают только для COO, а для CSR, например, градиент не считается. Но обо всём по порядку. Читать далее
#ml #data_science #разрежённые_тензоры #pytorch #оптимизация_памяти #torch_sparse #матричное_умножение | @habr_ai
Разработчики PyTorch предоставили модуль torch.sparse для работы с разреженными тензорами, где большинство элементов – нули. Зачем это нужно? Представьте матрицу смежности графа, сильно обрезанную сеть или облако точек – хранить такие данные плотным массивом без надобности расточительно. Разрежённая структура сохраняет только ненулевые элементы и их индексы, что сильно экономит память и ускоряет вычисления. Например, матрица размером 10,000 на 10,000 с 100 000 ненулевых float-значений в разрежённом COO-формате займёт не 400 МБ, а около 2 МБ.
Несмотря на перспективы, API разрежённых тензоров в PyTorch пока в бете и может менять крошечные детали. Будьте к этому готовы: часть операций поддерживается, часть – нет, и некоторые автоград-ячейки пока работают только для COO, а для CSR, например, градиент не считается. Но обо всём по порядку. Читать далее
#ml #data_science #разрежённые_тензоры #pytorch #оптимизация_памяти #torch_sparse #матричное_умножение | @habr_ai
Хабр
Всё что нужно знать про torch.sparse
Разработчики PyTorch предоставили модуль torch.sparse для работы с разреженными тензорами , где большинство элементов – нули. Зачем это нужно? Представьте матрицу смежности графа, сильно обрезанную...