Повышаем интерпретируемость SHAP-графиков
Привет, Хабр! В моей работе часто возникают задачи на исследование влияния факторов, на которые мы можем оказывать продуктовое влияние, на целевые метрики сообществ ВКонтакте. Один из возможных способов решения подобных задач — обучение ML‑моделей и последующий анализ значимости признаков в них. Базовым подходом видится использование графиков из библиотеки shap. Однако наиболее популярным является summary_plot, хотя он и повышает интерпретируемость модели, но отвечает не на все возникающие вопросы.
Меня зовут Сергей Королёв, я продуктовый аналитик в бизнес‑юните СМБ в VK, занимаюсь улучшением опыта предпринимателей на нашей платформе. В этой статье я представлю свое решение по кастомизации shap.dependence_plot для простого восприятия графиков влияния факторов на целевую метрику.
Читать далее
#shap #ml #feature_importance | @habr_ai
Привет, Хабр! В моей работе часто возникают задачи на исследование влияния факторов, на которые мы можем оказывать продуктовое влияние, на целевые метрики сообществ ВКонтакте. Один из возможных способов решения подобных задач — обучение ML‑моделей и последующий анализ значимости признаков в них. Базовым подходом видится использование графиков из библиотеки shap. Однако наиболее популярным является summary_plot, хотя он и повышает интерпретируемость модели, но отвечает не на все возникающие вопросы.
Меня зовут Сергей Королёв, я продуктовый аналитик в бизнес‑юните СМБ в VK, занимаюсь улучшением опыта предпринимателей на нашей платформе. В этой статье я представлю свое решение по кастомизации shap.dependence_plot для простого восприятия графиков влияния факторов на целевую метрику.
Читать далее
#shap #ml #feature_importance | @habr_ai
Хабр
Повышаем интерпретируемость SHAP-графиков
Привет, Хабр! В моей работе часто возникают задачи на исследование влияния факторов, на которые мы можем оказывать продуктовое влияние, на целевые метрики сообществ ВКонтакте. Один...
Введение в Feature Engineering для начинающих дата-сайентистов и ML-инженеров
Подготовили гайд о том, какие бывают признаки, когда и с помощью каких методов проводить генерацию фич и как решить распространенные ошибки при работе с признаками.
Составить его помогла Виктория Тюфякова, Senior Data Scientist компании ecom.tech.
Читать далее
#feature_engineering #features #фичи #scaling #one_hot_encoding #scikit_learn #xgboost #shap #lime #feature_selection | @habr_ai
Подготовили гайд о том, какие бывают признаки, когда и с помощью каких методов проводить генерацию фич и как решить распространенные ошибки при работе с признаками.
Составить его помогла Виктория Тюфякова, Senior Data Scientist компании ecom.tech.
Читать далее
#feature_engineering #features #фичи #scaling #one_hot_encoding #scikit_learn #xgboost #shap #lime #feature_selection | @habr_ai
Хабр
Введение в Feature Engineering для начинающих дата-сайентистов и ML-инженеров
Feature Engineering, или генерация признаков — это процесс создания новых признаков (характеристик или фич) из имеющихся данных, чтобы улучшить работу модели машинного обучения. Он может включать...
[Перевод] ML-подход к заблаговременному предотвращению оттока рекламодателей
В этом материале мы опишем систему для заблаговременного предотвращения оттока рекламодателей, основанную на машинном обучении (ML, Machine Learning). Прототип системы создан на основе данных организаций малого и среднего бизнеса (Small & Medium Business, SMB), с которыми работает Pinterest. Результаты изначального эксперимента говорят о том, что мы, с высокой вероятностью, можем обнаруживать возможный уход рекламодателей. Это, в свою очередь, способно помочь нашим торговым партнёрам. Система, подобная нашей, может достичь лучших результатов, чем обычный подход, когда пытаются вернуть уже ушедшего клиента.
Читать далее
#машинное_обучение #разработка #продажи #shap #gbdt #smb #auc_roc | @habr_ai
В этом материале мы опишем систему для заблаговременного предотвращения оттока рекламодателей, основанную на машинном обучении (ML, Machine Learning). Прототип системы создан на основе данных организаций малого и среднего бизнеса (Small & Medium Business, SMB), с которыми работает Pinterest. Результаты изначального эксперимента говорят о том, что мы, с высокой вероятностью, можем обнаруживать возможный уход рекламодателей. Это, в свою очередь, способно помочь нашим торговым партнёрам. Система, подобная нашей, может достичь лучших результатов, чем обычный подход, когда пытаются вернуть уже ушедшего клиента.
Читать далее
#машинное_обучение #разработка #продажи #shap #gbdt #smb #auc_roc | @habr_ai
Хабр
ML-подход к заблаговременному предотвращению оттока рекламодателей
В этом материале мы опишем систему для заблаговременного предотвращения оттока рекламодателей, основанную на машинном обучении (ML, Machine Learning). Прототип системы создан...
Практическая устойчивость значений Шепли в интерпретации моделей ИИ
Привет, Хабр!
В исследованиях и на практике значения Шепли (Shapley values) — один из наиболее популярных методов интерпретации как на практике, так и в исследованиях. На практике этого не делается — применяется аппроксимация.
Отсюда возникают вопросы, ответы на которые мы рассмотрим с вами в этой статье :)
Читать далее
#explainable_ai #shap #shapley_values | @habr_ai
Привет, Хабр!
В исследованиях и на практике значения Шепли (Shapley values) — один из наиболее популярных методов интерпретации как на практике, так и в исследованиях. На практике этого не делается — применяется аппроксимация.
Отсюда возникают вопросы, ответы на которые мы рассмотрим с вами в этой статье :)
Читать далее
#explainable_ai #shap #shapley_values | @habr_ai
Хабр
Практическая устойчивость значений Шепли в интерпретации моделей ИИ
Привет, Хабр! В исследованиях и на практике значения Шепли (Shapley values) — один из наиболее популярных методов интерпретации. По определению, значения Шепли вычисляются по оценке вклада признака во...
Фичи в парламент: еще один подход оценить важность признаков в древесных анcамблях
Привет, друзья!
Признаки, которыми орудует модель ИИ, в чём-то похожи на группы лиц, соединяющихся, чтобы сыграть в игру и выйграть максимально много. Этой идеей в задаче оценки важности коэффициентов в модели вдохновлен метод SHAP. И теперь не он один! Про метод, основанный на идее выборов в парламент в этой статье.
Читать далее
#xai #shap #ml | @habr_ai
Привет, друзья!
Признаки, которыми орудует модель ИИ, в чём-то похожи на группы лиц, соединяющихся, чтобы сыграть в игру и выйграть максимально много. Этой идеей в задаче оценки важности коэффициентов в модели вдохновлен метод SHAP. И теперь не он один! Про метод, основанный на идее выборов в парламент в этой статье.
Читать далее
#xai #shap #ml | @habr_ai
Хабр
Фичи в парламент: еще один подход оценить важность признаков в древесных анcамблях
Привет, друзья! Признаки, которыми орудует модель ИИ, в чём-то похожи на группы лиц, соединяющихся, чтобы сыграть в игру и выйграть максимально много. Этой идеей в задаче оценки важности коэффициентов...
Как мы обучили модель прогноза ранней просрочки: логистическая регрессия vs градиентный бустинг
Всем привет! На связи дата-сайентисты стрима разработки моделей для корпоративного сегмента ВТБ — Андрей Бояренков, Иван Кондраков и Денис Дурасов.
Как уже писали ранее в другой статье, внедрение процесса AutoML позволило нам во многом автоматизировать рутину и разработки, и применения моделей. Соответственно, у нас появилось больше времени для RnD-задач, которые могли бы быть полезны нашим заказчикам, чтобы охватить моделями новые процессы, а также провести исследования новых алгоритмов.
Поэтому мы составили мэппинг возможных моделей на элементы работы Банка с клиентами малого и среднего бизнеса в части предотвращения просрочек по кредитной задолженности, а также по взысканию задолженности. Из данной схемы стало понятно, что есть необходимость разработать модели для процессов по мониторингу заёмщиков Банка — Precollection-модели.
Под катом расскажем, как мы их разрабатывали и каких результатов удалось с ними добиться.
Читать далее
#data_science #ds #ml #machine_learning #скоринг #логистическая_регрессия #градиентный_бустинг #алгоритмы #shap #анализ_данных | @habr_ai
Всем привет! На связи дата-сайентисты стрима разработки моделей для корпоративного сегмента ВТБ — Андрей Бояренков, Иван Кондраков и Денис Дурасов.
Как уже писали ранее в другой статье, внедрение процесса AutoML позволило нам во многом автоматизировать рутину и разработки, и применения моделей. Соответственно, у нас появилось больше времени для RnD-задач, которые могли бы быть полезны нашим заказчикам, чтобы охватить моделями новые процессы, а также провести исследования новых алгоритмов.
Поэтому мы составили мэппинг возможных моделей на элементы работы Банка с клиентами малого и среднего бизнеса в части предотвращения просрочек по кредитной задолженности, а также по взысканию задолженности. Из данной схемы стало понятно, что есть необходимость разработать модели для процессов по мониторингу заёмщиков Банка — Precollection-модели.
Под катом расскажем, как мы их разрабатывали и каких результатов удалось с ними добиться.
Читать далее
#data_science #ds #ml #machine_learning #скоринг #логистическая_регрессия #градиентный_бустинг #алгоритмы #shap #анализ_данных | @habr_ai
Хабр
Как мы обучили модель прогноза ранней просрочки: логистическая регрессия vs градиентный бустинг
Всем привет! На связи дата-сайентисты стрима разработки моделей для корпоративного сегмента ВТБ — Андрей Бояренков , Иван Кондраков и Денис Дурасов . Как уже писали ранее в другой статье , внедрение...
Объяснимый ИИ в ML и DL
Объяснимый ИИ — очень важный аспект в ML и DL. Он заключается в том, чтобы интерпретировать модель так, чтобы можно было около прозрачно объяснить ее решения. Потому что это довольно частая необходимость как у конечного заказчика, ведь для них это просто «черный ящик», так и у разработчиков непосредственно (например, для отладки модели). На русском языке таких статей не так много (для тех, кто знает английский проблем с этим нет, на нем таких статей много, например, Kaggle), поэтому я решил, что статья покажется актуальной, и сегодня я попробую рассказать про это и показать на конкретном примере, как его можно реализовать. Читать далее
#ml #dl #python #explainable_ai #shap | @habr_ai
Объяснимый ИИ — очень важный аспект в ML и DL. Он заключается в том, чтобы интерпретировать модель так, чтобы можно было около прозрачно объяснить ее решения. Потому что это довольно частая необходимость как у конечного заказчика, ведь для них это просто «черный ящик», так и у разработчиков непосредственно (например, для отладки модели). На русском языке таких статей не так много (для тех, кто знает английский проблем с этим нет, на нем таких статей много, например, Kaggle), поэтому я решил, что статья покажется актуальной, и сегодня я попробую рассказать про это и показать на конкретном примере, как его можно реализовать. Читать далее
#ml #dl #python #explainable_ai #shap | @habr_ai
Хабр
Объяснимый ИИ в ML и DL
Объяснимый ИИ — очень важный аспект в ML и DL. Он заключается в том, чтобы интерпретировать модель так, чтобы можно было около прозрачно объяснить ее решения. Потому что это...
Shap-графики: как наглядно объяснить заказчику логику работы модели
Всем привет. Я Андрей Бояренков, лидер кластера бизнес-моделей стрима "Разработка моделей КИБ и СМБ" банка ВТБ.
В этой статье расскажу о том, какие на мой взгляд типы графиков необходимо построить, чтобы наиболее оптимальным образом показать заказчику логику работы фичей в моделях. Читать далее
#shap #machine_learning #catboost #data_science #python #моделирование | @habr_ai
Всем привет. Я Андрей Бояренков, лидер кластера бизнес-моделей стрима "Разработка моделей КИБ и СМБ" банка ВТБ.
В этой статье расскажу о том, какие на мой взгляд типы графиков необходимо построить, чтобы наиболее оптимальным образом показать заказчику логику работы фичей в моделях. Читать далее
#shap #machine_learning #catboost #data_science #python #моделирование | @habr_ai
Хабр
Shap-графики: как наглядно объяснить заказчику логику работы модели
Всем привет. Я Андрей Бояренков, лидер кластера бизнес-моделей стрима "Разработка моделей КИБ и СМБ" банка ВТБ. Наш кластер отвечает за: выстраивание и внедрение процессов AutoML, за разработку...